Spaces:
Runtime error
Runtime error
File size: 8,530 Bytes
54dc7b4 324f080 54dc7b4 099abfc 54dc7b4 652973c 324f080 54dc7b4 324f080 54dc7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
from apps import article, mic
import streamlit as st
from session import _get_state
from multiapp import MultiApp
# from io import BytesIO
# from apps.utils import read_markdown
# from apps import article
# import streamlit as st
# import pandas as pd
# import os
# import numpy as np
# from streamlit import caching
# from PIL import Image
# from model.flax_clip_vision_mbart.modeling_clip_vision_mbart import (
# FlaxCLIPVisionMBartForConditionalGeneration,
# )
# import matplotlib.pyplot as plt
# from mtranslate import translate
# from session import _get_state
# state = _get_state()
# @st.cache
# def load_model(ckpt):
# return FlaxCLIPVisionMBartForConditionalGeneration.from_pretrained(ckpt)
# tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50")
# language_mapping = {
# "en": "en_XX",
# "de": "de_DE",
# "fr": "fr_XX",
# "es": "es_XX"
# }
# code_to_name = {
# "en": "English",
# "fr": "French",
# "de": "German",
# "es": "Spanish",
# }
# @st.cache
# def generate_sequence(pixel_values, lang_code, num_beams, temperature, top_p, do_sample, top_k, max_length):
# lang_code = language_mapping[lang_code]
# output_ids = state.model.generate(input_ids=pixel_values, forced_bos_token_id=tokenizer.lang_code_to_id[lang_code], max_length=max_length, num_beams=num_beams, temperature=temperature, top_p = top_p, top_k=top_k, do_sample=do_sample)
# print(output_ids)
# output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=max_length)
# return output_sequence
# checkpoints = ["./ckpt/ckpt-51999"] # TODO: Maybe add more checkpoints?
# dummy_data = pd.read_csv("reference.tsv", sep="\t")
# st.sidebar.title("Generation Parameters")
# # max_length = st.sidebar.number_input("Max Length", min_value=16, max_value=128, value=64, step=1, help="The maximum length of sequence to be generated.")
# max_length = 64
# do_sample = st.sidebar.checkbox("Sample", value=False, help="Sample from the model instead of using beam search.")
# top_k = st.sidebar.number_input("Top K", min_value=10, max_value=200, value=50, step=1, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.")
# num_beams = st.sidebar.number_input(label="Number of Beams", min_value=2, max_value=10, value=4, step=1, help="Number of beams to be used in beam search.")
# temperature = st.sidebar.select_slider(label="Temperature", options = list(np.arange(0.0,1.1, step=0.1)), value=1.0, help ="The value used to module the next token probabilities.", format_func=lambda x: f"{x:.2f}")
# top_p = st.sidebar.select_slider(label = "Top-P", options = list(np.arange(0.0,1.1, step=0.1)),value=1.0, help="Nucleus Sampling : If set to float < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or higher are kept for generation.", format_func=lambda x: f"{x:.2f}")
# if st.sidebar.button("Clear All Cache"):
# caching.clear_cache()
# image_col, intro_col = st.beta_columns([3, 8])
# image_col.image("./misc/mic-logo.png", use_column_width="always")
# intro_col.write(read_markdown("intro.md"))
# with st.beta_expander("Usage"):
# st.markdown(read_markdown("usage.md"))
# with st.beta_expander("Article"):
# st.write(read_markdown("abstract.md"))
# st.write("## Methodology")
# st.image(
# "./misc/Multilingual-IC.png"
# )
# st.markdown(read_markdown("pretraining.md"))
# st.write(read_markdown("challenges.md"))
# st.write(read_markdown("social_impact.md"))
# st.write(read_markdown("bias.md"))
# col1, col2, col3, col4 = st.beta_columns([0.5,2.5,2.5,0.5])
# with col2:
# st.image("./misc/examples/female_dev_1.jpg", width=350, caption = 'German Caption: <PERSON> arbeitet an einem Computer.', use_column_width='always')
# with col3:
# st.image("./misc/examples/female_doctor.jpg", width=350, caption = 'English Caption: A portrait of <PERSON>, a doctor who specializes in health care.', use_column_width='always')
# col1, col2, col3, col4 = st.beta_columns([0.5,2.5,2.5,0.5])
# with col2:
# st.image("./misc/examples/female_doctor_1.jpg", width=350, caption = 'Spanish Caption: El Dr. <PERSON> es un estudiante de posgrado.', use_column_width='always')
# with col3:
# st.image("./misc/examples/women_cricket.jpg", width=350, caption = 'English Caption: <PERSON> of India bats against <PERSON> of Australia during the first Twenty20 match between India and Australia at Indian Bowl Stadium in New Delhi on Friday. - PTI', use_column_width='always')
# col1, col2, col3, col4 = st.beta_columns([0.5,2.5,2.5,0.5])
# with col2:
# st.image("./misc/examples/female_dev_2.jpg", width=350, caption = "French Caption: Un écran d'ordinateur avec un écran d'ordinateur ouvert.", use_column_width='always')
# with col3:
# st.image("./misc/examples/female_biker_resized.jpg", width=350, caption = 'German Caption: <PERSON> auf dem Motorrad von <PERSON>.', use_column_width='always')
# st.write(read_markdown("future_scope.md"))
# st.write(read_markdown("references.md"))
# # st.write(read_markdown("checkpoints.md"))
# st.write(read_markdown("acknowledgements.md"))
# if state.model is None:
# with st.spinner("Loading model..."):
# state.model = load_model(checkpoints[0])
# first_index = 25
# # Init Session State
# if state.image_file is None:
# state.image_file = dummy_data.loc[first_index, "image_file"]
# state.caption = dummy_data.loc[first_index, "caption"].strip("- ")
# state.lang_id = dummy_data.loc[first_index, "lang_id"]
# image_path = os.path.join("images", state.image_file)
# image = plt.imread(image_path)
# state.image = image
# if st.button("Get a random example", help="Get a random example from one of the seeded examples."):
# sample = dummy_data.sample(1).reset_index()
# state.image_file = sample.loc[0, "image_file"]
# state.caption = sample.loc[0, "caption"].strip("- ")
# state.lang_id = sample.loc[0, "lang_id"]
# image_path = os.path.join("images", state.image_file)
# image = plt.imread(image_path)
# state.image = image
# transformed_image = get_transformed_image(state.image)
# new_col1, new_col2 = st.beta_columns([5,5])
# # Display Image
# new_col1.image(state.image, use_column_width="always")
# # Display Reference Caption
# with new_col1.beta_expander("Reference Caption"):
# st.write("**Reference Caption**: " + state.caption)
# st.markdown(
# f"""**English Translation**: {state.caption if state.lang_id == "en" else translate(state.caption, 'en')}"""
# )
# # Select Language
# options = list(code_to_name.keys())
# lang_id = new_col2.selectbox(
# "Language",
# index=options.index(state.lang_id),
# options=options,
# format_func=lambda x: code_to_name[x],
# help="The language in which caption is to be generated."
# )
# sequence = ['']
# if new_col2.button("Generate Caption", help="Generate a caption in the specified language."):
# with st.spinner("Generating Sequence..."):
# sequence = generate_sequence(transformed_image, lang_id, num_beams, temperature, top_p, do_sample, top_k, max_length)
# # print(sequence)
# if sequence!=['']:
# new_col2.write(
# "**Generated Caption**: "+sequence[0]
# )
# new_col2.write(
# "**English Translation**: "+ sequence[0] if lang_id=="en" else translate(sequence[0])
# )
def main():
state = _get_state()
st.set_page_config(
page_title="Multilingual Image Captioning",
layout="wide",
initial_sidebar_state="auto",
page_icon="./misc/mic-logo.png",
)
st.title("Multilingual Image Captioning")
st.write(
"[Bhavitvya Malik](https://huggingface.co/bhavitvyamalik), [Gunjan Chhablani](https://huggingface.co/gchhablani)"
)
st.sidebar.title("Multilingual Image Captioning")
logo = st.sidebar.image("./misc/mic-logo.png")
st.sidebar.write("Multilingual Image Captioning addresses the challenge of caption generation for an image in a multilingual setting. Here, we fuse CLIP Vision transformer into mBART50 and perform training on translated version of Conceptual-12M dataset. Please use the radio buttons below to navigate.")
app = MultiApp(state)
app.add_app("Article", article.app)
app.add_app("Multilingual Image Captioning", mic.app)
app.run()
state.sync()
if __name__ == "__main__":
main() |