Spaces:
Runtime error
Runtime error
gchhablani
commited on
Commit
·
324f080
1
Parent(s):
c2067d8
Init basic app
Browse files
app.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
from streamlit.elements import markdown
|
8 |
+
from PIL import Image
|
9 |
+
from model.flax_clip_vision_mbart.modeling_clip_vision_mbart import (
|
10 |
+
FlaxCLIPVisionMBartForConditionalGeneration,
|
11 |
+
)
|
12 |
+
from transformers import MBart50TokenizerFast
|
13 |
+
from utils import (
|
14 |
+
get_transformed_image,
|
15 |
+
)
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
from mtranslate import translate
|
18 |
+
|
19 |
+
|
20 |
+
from session import _get_state
|
21 |
+
|
22 |
+
state = _get_state()
|
23 |
+
|
24 |
+
|
25 |
+
@st.cache
|
26 |
+
def load_model(ckpt):
|
27 |
+
return FlaxCLIPVisionMBartForConditionalGeneration.from_pretrained(ckpt)
|
28 |
+
|
29 |
+
|
30 |
+
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50")
|
31 |
+
|
32 |
+
language_mapping = {
|
33 |
+
"en": "en_XX",
|
34 |
+
"de": "de_DE",
|
35 |
+
"fr": "fr_XX",
|
36 |
+
"es": "es_XX"
|
37 |
+
}
|
38 |
+
|
39 |
+
code_to_name = {
|
40 |
+
"en": "English",
|
41 |
+
"fr": "French",
|
42 |
+
"de": "German",
|
43 |
+
"es": "Spanish",
|
44 |
+
}
|
45 |
+
|
46 |
+
@st.cache(persist=True)
|
47 |
+
def generate_sequence(pixel_values, lang_code, num_beams):
|
48 |
+
lang_code = language_mapping[lang_code]
|
49 |
+
output_ids = model.generate(input_ids=pixel_values, forced_bos_token_id=tokenizer.lang_code_to_id[lang_code], max_length=64, num_beams=num_beams)
|
50 |
+
print(output_ids)
|
51 |
+
output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=64)
|
52 |
+
return output_sequence
|
53 |
+
|
54 |
+
def read_markdown(path, parent="./sections/"):
|
55 |
+
with open(os.path.join(parent, path)) as f:
|
56 |
+
return f.read()
|
57 |
+
|
58 |
+
|
59 |
+
checkpoints = ["./ckpt/ckpt-22499"] # TODO: Maybe add more checkpoints?
|
60 |
+
dummy_data = pd.read_csv("reference.tsv", sep="\t")
|
61 |
+
|
62 |
+
st.set_page_config(
|
63 |
+
page_title="Multilingual Image Captioning",
|
64 |
+
layout="wide",
|
65 |
+
initial_sidebar_state="collapsed",
|
66 |
+
)
|
67 |
+
|
68 |
+
st.title("Multilingual Image Captioning")
|
69 |
+
st.write(
|
70 |
+
"[Bhavitvya Malik](https://huggingface.co/bhavitvyamalik), [Gunjan Chhablani](https://huggingface.co/gchhablani)"
|
71 |
+
)
|
72 |
+
|
73 |
+
st.sidebar.title("Settings")
|
74 |
+
num_beams = st.sidebar.number_input(label="Number of Beams", min_value=2, max_value=10, value=4, step=1, help="Number of beams to be used in beam search.")
|
75 |
+
|
76 |
+
with st.beta_expander("Usage"):
|
77 |
+
st.markdown(read_markdown("usage.md"))
|
78 |
+
|
79 |
+
first_index = 20
|
80 |
+
# Init Session State
|
81 |
+
if state.image_file is None:
|
82 |
+
state.image_file = dummy_data.loc[first_index, "image_file"]
|
83 |
+
state.caption = dummy_data.loc[first_index, "caption"].strip("- ")
|
84 |
+
state.lang_id = dummy_data.loc[first_index, "lang_id"]
|
85 |
+
|
86 |
+
image_path = os.path.join("images", state.image_file)
|
87 |
+
image = plt.imread(image_path)
|
88 |
+
state.image = image
|
89 |
+
|
90 |
+
col1, col2 = st.beta_columns([6, 4])
|
91 |
+
|
92 |
+
if col2.button("Get a random example"):
|
93 |
+
sample = dummy_data.sample(1).reset_index()
|
94 |
+
state.image_file = sample.loc[0, "image_file"]
|
95 |
+
state.caption = sample.loc[0, "caption"].strip("- ")
|
96 |
+
state.lang_id = sample.loc[0, "lang_id"]
|
97 |
+
|
98 |
+
image_path = os.path.join("images", state.image_file)
|
99 |
+
image = plt.imread(image_path)
|
100 |
+
state.image = image
|
101 |
+
|
102 |
+
col2.write("OR")
|
103 |
+
|
104 |
+
uploaded_file = col2.file_uploader("Upload your image", type=["png", "jpg", "jpeg"])
|
105 |
+
if uploaded_file is not None:
|
106 |
+
state.image_file = os.path.join("images", uploaded_file.name)
|
107 |
+
state.image = np.array(Image.open(uploaded_file))
|
108 |
+
|
109 |
+
transformed_image = get_transformed_image(state.image)
|
110 |
+
|
111 |
+
# Display Image
|
112 |
+
col1.image(state.image, use_column_width="auto")
|
113 |
+
|
114 |
+
# Display Reference Caption
|
115 |
+
col2.write("**Reference Caption**: " + state.caption)
|
116 |
+
col2.markdown(
|
117 |
+
f"""**English Translation**: {state.caption if state.lang_id == "en" else translate(state.caption, 'en')}"""
|
118 |
+
)
|
119 |
+
|
120 |
+
# Select Language
|
121 |
+
options = list(code_to_name.keys())
|
122 |
+
lang_id = col2.selectbox(
|
123 |
+
"Language",
|
124 |
+
index=options.index(state.lang_id),
|
125 |
+
options=options,
|
126 |
+
format_func=lambda x: code_to_name[x],
|
127 |
+
)
|
128 |
+
# Display Top-5 Predictions
|
129 |
+
with st.spinner("Loading model..."):
|
130 |
+
model = load_model(checkpoints[0])
|
131 |
+
|
132 |
+
sequence = ['']
|
133 |
+
if col2.button("Generate Caption"):
|
134 |
+
with st.spinner("Generating Sequence..."):
|
135 |
+
sequence = generate_sequence(transformed_image, lang_id, num_beams)
|
136 |
+
# print(sequence)
|
137 |
+
|
138 |
+
if sequence!=['']:
|
139 |
+
st.write(
|
140 |
+
"**Generated Caption**: "+sequence[0]
|
141 |
+
)
|
142 |
+
|
143 |
+
st.write(
|
144 |
+
"**English Translation**: "+ sequence[0] if lang_id=="en" else translate(sequence[0])
|
145 |
+
)
|
146 |
+
st.write(read_markdown("abstract.md"))
|
147 |
+
st.write(read_markdown("caveats.md"))
|
148 |
+
# st.write("# Methodology")
|
149 |
+
# st.image(
|
150 |
+
# "./misc/Multilingual-IC.png", caption="Seq2Seq model for Image-text Captioning."
|
151 |
+
# )
|
152 |
+
st.markdown(read_markdown("pretraining.md"))
|
153 |
+
st.write(read_markdown("challenges.md"))
|
154 |
+
st.write(read_markdown("social_impact.md"))
|
155 |
+
st.write(read_markdown("references.md"))
|
156 |
+
# st.write(read_markdown("checkpoints.md"))
|
157 |
+
st.write(read_markdown("acknowledgements.md"))
|