File size: 2,433 Bytes
cf349fd
 
f1d50b1
 
503acf7
 
 
f1d50b1
 
 
503acf7
 
f1d50b1
cf349fd
503acf7
f1d50b1
cf349fd
503acf7
cf349fd
 
 
 
 
 
 
c0d4b59
 
cf349fd
 
503acf7
f1d50b1
cf349fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os

import streamlit as st

from utils import load_model, load_index
import numpy as np
import matplotlib.pyplot as plt


def app(model_name):
    images_directory = 'images/val2017'
    features_directory = f'features/val2017/{model_name}.tsv'

    files, index = load_index(features_directory)
    model, processor = load_model(f'koclip/{model_name}')

    st.title("Text to Image Search Engine")
    st.markdown("""
        This demonstration explores capability of KoCLIP as a Korean-language Image search engine. Embeddings for each of
        5000 images from [MSCOCO](https://cocodataset.org/#home) 2017 validation set was generated using trained KoCLIP 
        vision model. They are ranked based on cosine similarity distance from input Text query embeddings and top 10 images
        are displayed below.
        
        KoCLIP is a retraining of OpenAI's CLIP model using 82,783 images from [MSCOCO](https://cocodataset.org/#home) dataset and
        Korean caption annotations. Korean translation of caption annotations were obtained from [AI Hub](https://aihub.or.kr/keti_data_board/visual_intelligence).
        Base model `koclip` uses `klue/roberta` as text encoder and `openai/clip-vit-base-patch32` as image encoder.
        Larger model `koclip-large` uses `klue/roberta` as text encoder and bigger `google/vit-large-patch16-224` as image encoder.
        
        Example Queries : ์•„ํŒŒํŠธ(Apartment), ์ž๋™์ฐจ(Car), ์ปดํ“จํ„ฐ(Computer)
    """)

    query = st.text_input("ํ•œ๊ธ€ ์งˆ๋ฌธ์„ ์ ์–ด์ฃผ์„ธ์š” (Korean Text Query) :", value="์•„ํŒŒํŠธ")
    if st.button("์งˆ๋ฌธ (Query)"):
        proc = processor(text=[query], images=None, return_tensors="jax", padding=True)
        vec = np.asarray(model.get_text_features(**proc))
        ids, dists = index.knnQuery(vec, k=10)
        result_files = map(lambda id: files[id], ids)
        result_imgs, result_captions = [], []
        for file, dist in zip(result_files, dists):
            result_imgs.append(plt.imread(os.path.join(images_directory, file)))
            result_captions.append("{:s} (์œ ์‚ฌ๋„: {:.3f})".format(file, 1.0 - dist))

        st.image(result_imgs[:3], caption=result_captions[:3], width=200)
        st.image(result_imgs[3:6], caption=result_captions[3:6], width=200)
        st.image(result_imgs[6:9], caption=result_captions[6:9], width=200)
        st.image(result_imgs[9:], caption=result_captions[9:], width=200)