Spaces:
Runtime error
Runtime error
File size: 12,683 Bytes
44c11f2 c399665 ba57ea8 53ddc87 f54892c b3c9da2 b929de0 919efff cd12ada b3c9da2 919efff b3c9da2 919efff b3c9da2 919efff b3c9da2 919efff b3c9da2 919efff 29e00f0 44c11f2 b3c9da2 44c11f2 8527e35 919efff 8527e35 919efff 8527e35 b929de0 63672a5 919efff b3c9da2 8527e35 919efff 8527e35 919efff 8527e35 b929de0 63672a5 919efff b3c9da2 44c11f2 919efff b3c9da2 287b7cd 919efff b3c9da2 53ddc87 b3c9da2 53ddc87 b3c9da2 53ddc87 919efff b3c9da2 44c11f2 919efff b3c9da2 53ddc87 b3c9da2 53ddc87 919efff b3c9da2 919efff 546443e 80225b5 919efff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import streamlit as st
from apps.utils import read_markdown
from .streamlit_tensorboard import st_tensorboard, kill_tensorboard
from .utils import Toc
def app(state=None):
#kill_tensorboard()
toc = Toc()
st.info("Welcome to our Multilingual-VQA demo. Please use the navigation sidebar to move to our demo, or scroll below to read all about our project. 🤗 In case the sidebar isn't properly rendered, please change to a smaller window size and back to full screen.")
st.header("Table of contents")
toc.placeholder()
toc.header("Introduction and Motivation")
st.write(read_markdown("intro/intro.md"))
toc.subheader("Novel Contributions")
st.write(read_markdown("intro/contributions.md"))
toc.header("Methodology")
toc.subheader("Pre-training")
st.write(read_markdown("pretraining/intro.md"))
# col1, col2 = st.beta_columns([5,5])
st.image(
"./misc/article/Multilingual-VQA.png",
caption="Masked LM model for Image-text Pre-training.",
)
toc.subsubheader("MLM Dataset")
st.write(read_markdown("pretraining/data.md"))
toc.subsubheader("MLM Model")
st.write(read_markdown("pretraining/model.md"))
toc.subsubheader("MLM Training Logs")
st.info("In case the TensorBoard logs are not displayed, please visit this link: https://huggingface.co/flax-community/multilingual-vqa-pt-ckpts/tensorboard")
st_tensorboard(logdir='./logs/pretrain_logs', port=6006)
toc.subheader("Finetuning")
toc.subsubheader("VQA Dataset")
st.write(read_markdown("finetuning/data.md"))
toc.subsubheader("VQA Model")
st.write(read_markdown("finetuning/model.md"))
toc.subsubheader("VQA Training Logs")
st.info("In case the TensorBoard logs are not displayed, please visit this link: https://huggingface.co/flax-community/multilingual-vqa-pt-60k-ft/tensorboard")
st_tensorboard(logdir='./logs/finetune_logs', port=6007)
toc.header("Challenges and Technical Difficulties")
st.write(read_markdown("challenges.md"))
toc.header("Limitations")
st.write(read_markdown("limitations.md"))
toc.header("Conclusion, Future Work, and Social Impact")
toc.subheader("Conclusion")
st.write(read_markdown("conclusion_future_work/conclusion.md"))
toc.subheader("Future Work")
st.write(read_markdown("conclusion_future_work/future_work.md"))
toc.subheader("Social Impact")
st.write(read_markdown("conclusion_future_work/social_impact.md"))
toc.header("References")
st.write(read_markdown("references.md"))
toc.header("Checkpoints")
st.write(read_markdown("checkpoints/checkpoints.md"))
toc.subheader("Other Checkpoints")
st.write(read_markdown("checkpoints/other_checkpoints.md"))
toc.header("Acknowledgements")
st.write(read_markdown("acknowledgements.md"))
toc.header("VQA Examples")
toc.subheader("Color Questions")
col1, col2, col3 = st.beta_columns([1,1,1])
col1.image("./sections/examples/men_riding_horses.jpeg", use_column_width="auto", width=300)
col1.write("**Custom Question**: What color are the horses?")
col1.write("**Predicted Answer**: brown✅")
col2.image("./sections/examples/cat_color.jpeg", use_column_width="auto", width=300)
col2.write("**Custom Question**: What color is the cat?")
col2.write("**Predicted Answer**: white✅")
col3.image("./sections/examples/men_happy.jpeg", use_column_width="auto", width=300)
col3.write("**Custom Question**: What color is the man's jacket?")
col3.write("**Predicted Answer**: black⚫")
col1.image("./sections/examples/car_color.jpeg", use_column_width="auto", width=300)
col1.write("**Actual Question**: What color is the car?")
col1.write("**Predicted Answer**: blue❎")
col2.image("./sections/examples/coat_color.jpeg", use_column_width="auto", width=300)
col2.write("**Actual Question**: What color is this person's coat?")
col2.write("**Predicted Answer**: blue✅")
toc.subheader("Counting Questions")
col1, col2, col3 = st.beta_columns([1,1, 1])
col1.image("./sections/examples/giraffe_zebra.jpeg", use_column_width="auto", width=300)
col1.write("**Actual Question**: How many zebras are there?")
col1.write("**Predicted Answer**: 0❎")
col2.image("./sections/examples/giraffe_zebra.jpeg", use_column_width="auto", width=300)
col2.write("**Custom Question**: How many giraffes are there?")
col2.write("**Predicted Answer**: 2❎")
col3.image("./sections/examples/teddy.jpeg", use_column_width="auto", width=300)
col3.write("**Custom Question**: How many teddy bears are present in the image?")
col3.write("**Predicted Answer**: 3✅")
col1.image("./sections/examples/candle_count.jpeg", use_column_width="auto", width=300)
col1.write("**Actual Question**: ¿Cuantas velas hay en el cupcake?")
col1.write("**English Translation**: How many candles are in the cupcake?")
col1.write("**Predicted Answer**: 0❎")
col1.image("./sections/examples/people_picture.jpeg", use_column_width="auto", width=300)
col1.write("**Actual Question**: ¿A cuánta gente le están tomando una foto?")
col1.write("**English Translation**: How many people are you taking a picture of?")
col1.write("**Predicted Answer**: 10❎")
toc.subheader("Size/Shape Questions")
col1, col2, col3 = st.beta_columns([1,1,1])
col1.image("./sections/examples/vase.jpeg", use_column_width="auto", width=300)
col1.write("**Actual Question**: What shape is the vase? ")
col1.write("**Predicted Answer**: round✅")
toc.subheader("Yes/No Questions")
col1, col2, col3 = st.beta_columns([1,1,1])
col1.image("./sections/examples/teddy.jpeg", use_column_width="auto", width=300)
col1.write("**Actual Question**: Sind das drei Teddybären?")
col1.write("**English Translation**: Are those teddy bears?")
col1.write("**Predicted Answer**: Ja (yes)✅")
col2.image("./sections/examples/winter.jpeg", use_column_width="auto", width=300)
col2.write("**Actual Question**: ¿Se lo tomaron en invierno?")
col2.write("**English Translation**: Did they take it in winter?")
col2.write("**Predicted Answer**: si (yes)✅")
col3.image("./sections/examples/clock.jpeg", use_column_width="auto", width=300)
col3.write("**Actual Question**: Is the clock ornate? ")
col3.write("**Predicted Answer**: yes✅")
col1.image("./sections/examples/decorated_building.jpeg", use_column_width="auto", width=300)
col1.write("**Actual Question**: Ist das Gebäude orniert?")
col1.write("**English Translation**: Is the building decorated?")
col1.write("**Predicted Answer**: Ja (yes)✅")
col2.image("./sections/examples/commuter_train.jpeg", use_column_width="auto", width=300)
col2.write("**Actual Question**: Ist das ein Pendler-Zug?")
col2.write("**English Translation**: Is that a commuter train?")
col2.write("**Predicted Answer**: Ja (yes)❎")
col3.image("./sections/examples/is_in_a_restaurant.jpeg", use_column_width="auto", width=300)
col3.write("**Actual Question**: Elle est dans un restaurant?")
col3.write("**English Translation**: Is she in a restaurant?")
col3.write("**Predicted Answer**: Oui (yes)❎")
col1.image("./sections/examples/giraffe_eyes.jpeg", use_column_width="auto", width=300)
col1.write("**Actual Question**: Est-ce que l'œil de la girafe est fermé?")
col1.write("**English Translation**: Are the giraffe's eyes closed?")
col1.write("**Predicted Answer**: Oui (yes)❎")
toc.subheader("Negatives Test")
col1, col2, col3 = st.beta_columns([1,1,1])
col1.image("./sections/examples/men_happy.jpeg", use_column_width="auto", width=300)
col2.write("**Actual Question**: Is the man happy?")
col2.write("**Predicted Answer**: Yes✅")
col3.write("**Actual Question**: Is the man not happy?")
col3.write("**Predicted Answer**: Yes❎")
col2.write("**Actual Question**: Is the man sad?")
col2.write("**Predicted Answer**: No✅")
col3.write("**Actual Question**: Is the man not sad?")
col3.write("**Predicted Answer**: No❎")
col2.write("**Actual Question**: Is the man unhappy?")
col2.write("**Predicted Answer**: No✅")
col3.write("**Actual Question**: Is the man not unhappy?")
col3.write("**Predicted Answer**: No❎")
toc.subheader("Multilinguality Test")
toc.subsubheader("Color Question")
col1, col2, col3 = st.beta_columns([1,1,1])
col1.image("./sections/examples/truck_color.jpeg", use_column_width="auto", width=300)
col2.write("**Actual Question**: What color is the building?")
col2.write("**Predicted Answer**: red✅")
col3.write("**Actual Question**: Welche Farbe hat das Gebäude?")
col3.write("**English Translation**: What color is the building?")
col3.write("**Predicted Answer**: rot (red)✅")
col2.write("**Actual Question**: ¿De qué color es el edificio?")
col2.write("**English Translation**: What color is the building?")
col2.write("**Predicted Answer**: rojo (red)✅")
col3.write("**Actual Question**: De quelle couleur est le bâtiment ?")
col3.write("**English Translation**: What color is the building?")
col3.write("**Predicted Answer**: rouge (red)✅")
toc.subsubheader("Counting Question")
col1, col2, col3 = st.beta_columns([1,1,1])
col1.image("./sections/examples/bear.jpeg", use_column_width="auto", width=300)
col2.write("**Actual Question**: How many bears do you see?")
col2.write("**Predicted Answer**: 1✅")
col3.write("**Actual Question**: Wie viele Bären siehst du?")
col3.write("**English Translation**: How many bears do you see?")
col3.write("**Predicted Answer**: 1✅")
col2.write("**Actual Question**: ¿Cuántos osos ves?")
col2.write("**English Translation**: How many bears do you see?")
col2.write("**Predicted Answer**: 1✅")
col3.write("**Actual Question**: Combien d'ours voyez-vous ?")
col3.write("**English Translation**: How many bears do you see?")
col3.write("**Predicted Answer**: 1✅")
toc.subsubheader("Misc Question")
col1, col2, col3 = st.beta_columns([1,1,1])
col1.image("./sections/examples/bench.jpeg", use_column_width="auto", width=300)
col2.write("**Actual Question**: Where is the bench?")
col2.write("**Predicted Answer**: field✅")
col3.write("**Actual Question**: Où est le banc ?")
col3.write("**English Translation**: Where is the bench?")
col3.write("**Predicted Answer**: domaine (field)✅")
col2.write("**Actual Question**: ¿Dónde está el banco?")
col2.write("**English Translation**: Where is the bench?")
col2.write("**Predicted Answer**: campo (field)✅")
col3.write("**Actual Question**: Wo ist die Bank?")
col3.write("**English Translation**: Where is the bench?")
col3.write("**Predicted Answer**: Feld (field)✅")
toc.subheader("Misc Questions")
col1, col2, col3 = st.beta_columns([1,1,1])
col1.image("./sections/examples/tennis.jpeg", use_column_width="auto", width=300)
col1.write("**Actual Question**: ¿Qué clase de juego está viendo la multitud?")
col1.write("**English Translation**: What kind of game is the crowd watching?")
col1.write("**Predicted Answer**: tenis (tennis)✅")
col2.image("./sections/examples/men_body_suits.jpeg", use_column_width="auto", width=300)
col2.write("**Custom Question**: What are the men wearing?")
col2.write("**Predicted Answer**: wetsuits✅")
col3.image("./sections/examples/bathroom.jpeg", use_column_width="auto", width=300)
col3.write("**Actual Question**: ¿A qué habitación perteneces?")
col3.write("**English Translation**: What room do you belong to?")
col3.write("**Predicted Answer**: bano (bathroom)✅")
col1.image("./sections/examples/men_riding_horses.jpeg", use_column_width="auto", width=300)
col1.write("**Custom Question**: What are the men riding?")
col1.write("**Predicted Answer**: horses✅")
col2.image("./sections/examples/inside_outside.jpeg", use_column_width="auto", width=300)
col2.write("**Actual Question**: Was this taken inside or outside?")
col2.write("**Predicted Answer**: inside✅")
col3.image("./sections/examples/dog_looking_at.jpeg", use_column_width="auto", width=300)
col3.write("**Actual Question**: Was guckt der Hund denn so?")
col3.write("**English Translation**: What is the dog looking at?")
col3.write("**Predicted Answer**: Frisbeescheibe (frisbee)❎")
toc.generate() |