gchhablani commited on
Commit
546443e
·
1 Parent(s): a7e5eb4

Add VQA Examples

Browse files
apps/article.py CHANGED
@@ -66,4 +66,206 @@ def app(state=None):
66
 
67
  toc.header("Acknowledgements")
68
  st.write(read_markdown("acknowledgements.md"))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
  toc.generate()
 
66
 
67
  toc.header("Acknowledgements")
68
  st.write(read_markdown("acknowledgements.md"))
69
+
70
+ toc.header("VQA Examples")
71
+ toc.subheader("Color Questions")
72
+ col1, col2, col3 = st.beta_columns([1,1,1])
73
+
74
+ col1.image("./sections/examples/men_riding_horses.jpeg", use_column_width="auto", width=300)
75
+ col1.write("**Custom Question**: What color are the horses?")
76
+ col1.write("**Predicted Answer**: brown✅")
77
+
78
+ col2.image("./sections/examples/cat_color.jpeg", use_column_width="auto", width=300)
79
+ col2.write("**Custom Question**: What color is the cat?")
80
+ col2.write("**Predicted Answer**: white✅")
81
+
82
+ col3.image("./sections/examples/men_happy.jpeg", use_column_width="auto", width=300)
83
+ col3.write("**Custom Question**: What color is the man's jacket?")
84
+ col3.write("**Predicted Answer**: black⚫")
85
+
86
+ col1.image("./sections/examples/car_color.jpeg", use_column_width="auto", width=300)
87
+ col1.write("**Actual Question**: What color is the car?")
88
+ col1.write("**Predicted Answer**: blue❎")
89
+
90
+ col2.image("./sections/examples/coat_color.jpeg", use_column_width="auto", width=300)
91
+ col2.write("**Actual Question**: What color is this person's coat?")
92
+ col2.write("**Predicted Answer**: blue✅")
93
+
94
+ toc.subheader("Counting Questions")
95
+
96
+ col1, col2, col3 = st.beta_columns([1,1, 1])
97
+
98
+ col1.image("./sections/examples/giraffe_zebra.jpeg", use_column_width="auto", width=300)
99
+ col1.write("**Actual Question**: How many zebras are there?")
100
+ col1.write("**Predicted Answer**: 0❎")
101
+
102
+ col2.image("./sections/examples/giraffe_zebra.jpeg", use_column_width="auto", width=300)
103
+ col2.write("**Custom Question**: How many giraffes are there?")
104
+ col2.write("**Predicted Answer**: 2❎")
105
+
106
+ col3.image("./sections/examples/teddy.jpeg", use_column_width="auto", width=300)
107
+ col3.write("**Custom Question**: How many teddy bears are present in the image?")
108
+ col3.write("**Predicted Answer**: 3✅")
109
+
110
+ col1.image("./sections/examples/candle_count.jpeg", use_column_width="auto", width=300)
111
+ col1.write("**Actual Question**: ¿Cuantas velas hay en el cupcake?")
112
+ col1.write("**English Translation**: How many candles are in the cupcake?")
113
+ col1.write("**Predicted Answer**: 0❎")
114
+
115
+ col1.image("./sections/examples/people_picture.jpeg", use_column_width="auto", width=300)
116
+ col1.write("**Actual Question**: ¿A cuánta gente le están tomando una foto?")
117
+ col1.write("**English Translation**: How many people are you taking a picture of?")
118
+ col1.write("**Predicted Answer**: 10❎")
119
+
120
+ toc.subheader("Size/Shape Questions")
121
+ col1, col2, col3 = st.beta_columns([1,1,1])
122
+ col1.image("./sections/examples/vase.jpeg", use_column_width="auto", width=300)
123
+ col1.write("**Actual Question**: What shape is the vase? ")
124
+ col1.write("**Predicted Answer**: round✅")
125
+
126
+
127
+ toc.subheader("Yes/No Questions")
128
+ col1, col2, col3 = st.beta_columns([1,1,1])
129
+
130
+ col1.image("./sections/examples/teddy.jpeg", use_column_width="auto", width=300)
131
+ col1.write("**Actual Question**: Sind das drei Teddybären?")
132
+ col1.write("**English Translation**: Are those teddy bears?")
133
+ col1.write("**Predicted Answer**: Ja (yes)✅")
134
+
135
+ col2.image("./sections/examples/winter.jpeg", use_column_width="auto", width=300)
136
+ col2.write("**Actual Question**: ¿Se lo tomaron en invierno?")
137
+ col2.write("**English Translation**: Did they take it in winter?")
138
+ col2.write("**Predicted Answer**: si (yes)✅")
139
+
140
+ col3.image("./sections/examples/clock.jpeg", use_column_width="auto", width=300)
141
+ col3.write("**Actual Question**: Is the clock ornate? ")
142
+ col3.write("**Predicted Answer**: yes✅")
143
+
144
+ col1.image("./sections/examples/decorated_building.jpeg", use_column_width="auto", width=300)
145
+ col1.write("**Actual Question**: Ist das Gebäude orniert?")
146
+ col1.write("**English Translation**: Is the building decorated?")
147
+ col1.write("**Predicted Answer**: Ja (yes)✅")
148
+
149
+ col2.image("./sections/examples/commuter_train.jpeg", use_column_width="auto", width=300)
150
+ col2.write("**Actual Question**: Ist das ein Pendler-Zug?")
151
+ col2.write("**English Translation**: Is that a commuter train?")
152
+ col2.write("**Predicted Answer**: Ja (yes)❎")
153
+
154
+ col3.image("./sections/examples/is_in_a_restaurant.jpeg", use_column_width="auto", width=300)
155
+ col3.write("**Actual Question**: Elle est dans un restaurant?")
156
+ col3.write("**English Translation**: Is she in a restaurant?")
157
+ col3.write("**Predicted Answer**: Oui (yes)❎")
158
+
159
+ col1.image("./sections/examples/giraffe_eyes.jpeg", use_column_width="auto", width=300)
160
+ col1.write("**Actual Question**: Est-ce que l'œil de la girafe est fermé?")
161
+ col1.write("**English Translation**: Are the giraffe's eyes closed?")
162
+ col1.write("**Predicted Answer**: Oui (yes)❎")
163
+
164
+ toc.subheader("Negatives Test")
165
+ col1, col2, col3 = st.beta_columns([1,1,1])
166
+ col1.image("./sections/examples/men_happy.jpeg", use_column_width="auto", width=300)
167
+
168
+ col2.write("**Actual Question**: Is the man happy?")
169
+ col2.write("**Predicted Answer**: Yes✅")
170
+
171
+ col3.write("**Actual Question**: Is the man not happy?")
172
+ col3.write("**Predicted Answer**: Yes❎")
173
+
174
+ col2.write("**Actual Question**: Is the man sad?")
175
+ col2.write("**Predicted Answer**: No✅")
176
+
177
+ col3.write("**Actual Question**: Is the man not sad?")
178
+ col3.write("**Predicted Answer**: No❎")
179
+
180
+ col2.write("**Actual Question**: Is the man unhappy?")
181
+ col2.write("**Predicted Answer**: No✅")
182
+
183
+ col3.write("**Actual Question**: Is the man not unhappy?")
184
+ col3.write("**Predicted Answer**: No❎")
185
+
186
+ toc.subheader("Multilinguality Test")
187
+
188
+ toc.subsubheader("Color Question")
189
+ col1, col2, col3 = st.beta_columns([1,1,1])
190
+ col1.image("./sections/examples/truck_color.jpeg", use_column_width="auto", width=300)
191
+
192
+ col2.write("**Actual Question**: What color is the building?")
193
+ col2.write("**Predicted Answer**: red✅")
194
+
195
+ col3.write("**Actual Question**: Welche Farbe hat das Gebäude?")
196
+ col3.write("**English Translation**: What color is the building?")
197
+ col3.write("**Predicted Answer**: rot (red)✅")
198
+
199
+ col2.write("**Actual Question**: ¿De qué color es el edificio?")
200
+ col2.write("**English Translation**: What color is the building?")
201
+ col2.write("**Predicted Answer**: rojo (red)✅")
202
+
203
+ col3.write("**Actual Question**: De quelle couleur est le bâtiment ?")
204
+ col3.write("**English Translation**: What color is the building?")
205
+ col3.write("**Predicted Answer**: rouge (red)✅")
206
+
207
+ toc.subsubheader("Counting Question")
208
+ col1, col2, col3 = st.beta_columns([1,1,1])
209
+ col1.image("./sections/examples/bear.jpeg", use_column_width="auto", width=300)
210
+
211
+ col2.write("**Actual Question**: How many bears do you see?")
212
+ col2.write("**Predicted Answer**: 1✅")
213
+
214
+ col3.write("**Actual Question**: Wie viele Bären siehst du?")
215
+ col3.write("**English Translation**: How many bears do you see?")
216
+ col3.write("**Predicted Answer**: 1✅")
217
+
218
+ col2.write("**Actual Question**: ¿Cuántos osos ves?")
219
+ col2.write("**English Translation**: How many bears do you see?")
220
+ col2.write("**Predicted Answer**: 1✅")
221
+
222
+ col3.write("**Actual Question**: Combien d'ours voyez-vous ?")
223
+ col3.write("**English Translation**: How many bears do you see?")
224
+ col3.write("**Predicted Answer**: 1✅")
225
+
226
+ toc.subsubheader("Misc Question")
227
+ col1, col2, col3 = st.beta_columns([1,1,1])
228
+ col1.image("./sections/examples/bench.jpeg", use_column_width="auto", width=300)
229
+
230
+ col2.write("**Actual Question**: Where is the bench?")
231
+ col2.write("**Predicted Answer**: field✅")
232
+
233
+ col3.write("**Actual Question**: Où est le banc ?")
234
+ col3.write("**English Translation**: Where is the bench?")
235
+ col3.write("**Predicted Answer**: domaine (field)✅")
236
+
237
+ col2.write("**Actual Question**: ¿Dónde está el banco?")
238
+ col2.write("**English Translation**: Where is the bench?")
239
+ col2.write("**Predicted Answer**: campo (field)✅")
240
+
241
+ col3.write("**Actual Question**: Wo ist die Bank?")
242
+ col3.write("**English Translation**: Where is the bench?")
243
+ col3.write("**Predicted Answer**: Feld (field)✅")
244
+
245
+
246
+ toc.subheader("Misc Questions")
247
+ col1, col2, col3 = st.beta_columns([1,1,1])
248
+
249
+ col1.image("./sections/examples/tennis.jpeg", use_column_width="auto", width=300)
250
+ col1.write("**Actual Question**: ¿Qué clase de juego está viendo la multitud?")
251
+ col1.write("**English Translation**: What kind of game is the crowd watching?")
252
+ col1.write("**Predicted Answer**: tenis (tennis)✅")
253
+
254
+ col2.image("./sections/examples/men_body_suits.jpeg", use_column_width="auto", width=300)
255
+ col2.write("**Custom Question**: What are the men wearing?")
256
+ col2.write("**Predicted Answer**: wetsuits✅")
257
+
258
+ col3.image("./sections/examples/bathroom.jpeg", use_column_width="auto", width=300)
259
+ col3.write("**Actual Question**: ¿A qué habitación perteneces?")
260
+ col3.write("**English Translation**: What room do you belong to?")
261
+ col3.write("**Predicted Answer**: bano (bathroom)✅")
262
+
263
+ col1.image("./sections/examples/men_riding_horses.jpeg", use_column_width="auto", width=300)
264
+ col1.write("**Custom Question**: What are the men riding?")
265
+ col1.write("**Predicted Answer**: horses✅")
266
+
267
+ col2.image("./sections/examples/inside_outside.jpeg", use_column_width="auto", width=300)
268
+ col2.write("**Actual Question**: Was this taken inside or outside?")
269
+ col2.write("**Predicted Answer**: inside✅")
270
+
271
  toc.generate()
sections/examples/bathroom.jpeg ADDED
sections/examples/bear.jpeg ADDED
sections/examples/bench.jpeg ADDED
sections/examples/candle_count.jpeg ADDED
sections/examples/car_color.jpeg ADDED
sections/examples/cat_color.jpeg ADDED
sections/examples/clock.jpeg ADDED
sections/examples/coat_color.jpeg ADDED
sections/examples/commuter_train.jpeg ADDED
sections/examples/decorated_building.jpeg ADDED
sections/examples/elephants.jpeg ADDED
sections/examples/examples.md ADDED
File without changes
sections/examples/giraffe_eyes.jpeg ADDED
sections/examples/giraffe_zebra.jpeg ADDED
sections/examples/inside_outside.jpeg ADDED
sections/examples/is_in_a_restaurant.jpeg ADDED
sections/examples/men_body_suits.jpeg ADDED
sections/examples/men_happy.jpeg ADDED
sections/examples/men_riding_horses.jpeg ADDED
sections/examples/people_picture.jpeg ADDED
sections/examples/teddy.jpeg ADDED
sections/examples/tennis.jpeg ADDED
sections/examples/truck_color.jpeg ADDED
sections/examples/vase.jpeg ADDED
sections/examples/winter.jpeg ADDED