Spaces:
Runtime error
Runtime error
File size: 1,266 Bytes
44c11f2 e289356 2c8f495 405f2d4 fb3c77c 2c8f495 405f2d4 2c8f495 405f2d4 d8dbe3e 405f2d4 0808df5 69e32d1 d8dbe3e 405f2d4 0808df5 4d8488a 7f529a4 2c8f495 44c11f2 405f2d4 6936744 405f2d4 2c8f495 405f2d4 2c8f495 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
from apps import mlm, vqa, article
import streamlit as st
from session import _get_state
from multiapp import MultiApp
from apps.utils import read_markdown
def main():
state = _get_state()
st.set_page_config(
page_title="Multilingual VQA",
layout="wide",
initial_sidebar_state="collapsed",
page_icon="./misc/mvqa-logo-3-white.png",
)
st.title("Multilingual Visual Question Answering")
st.write(
"[Gunjan Chhablani](https://huggingface.co/gchhablani), [Bhavitvya Malik](https://huggingface.co/bhavitvyamalik)"
)
st.sidebar.title("Multilingual VQA")
logo = st.sidebar.image("./misc/mvqa-logo-3-white.png")
st.sidebar.write("Multilingual VQA addresses the challenge of visual question answering in a multilingual setting. Here, we fuse CLIP Vision transformer into BERT and perform pre-training and fine-tuning on translated versions of Conceptual-12M and VQAv2 datasets. Please use the radio buttons below to navigate.")
app = MultiApp(state)
app.add_app("Article", article.app)
app.add_app("Visual Question Answering", vqa.app)
app.add_app("Mask Filling", mlm.app)
app.add_app("Examples", mlm.app)
app.run()
state.sync()
if __name__ == "__main__":
main()
|