Spaces:
Runtime error
Runtime error
gchhablani
commited on
Commit
β’
405f2d4
1
Parent(s):
61c3dfa
Add MLM task
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- app.py +42 -173
- apps/mlm.py +109 -0
- {model β apps/model}/__init__.py +0 -0
- {model β apps/model}/flax_clip_vision_bert/__init__.py +0 -0
- {model β apps/model}/flax_clip_vision_bert/configuration_clip_vision_bert.py +0 -0
- {model β apps/model}/flax_clip_vision_bert/modeling_clip_vision_bert.py +0 -0
- utils.py β apps/utils.py +6 -5
- apps/vqa.py +131 -0
- cc12m_data/.DS_Store +0 -0
- cc12m_data/images_vqa/.DS_Store +0 -0
- cc12m_data/images_vqa/00212055---Wax_cylinder_in_Dictaphone.jpg +0 -0
- cc12m_data/images_vqa/00315853---041bdd212f5b5d3d30cbc4ccf523f1a3.jpg +0 -0
- cc12m_data/images_vqa/00328633---Metal+chips+fly+in+a+high+speed+turning+operation+performed+on+a+computer+numerical+control+turning+center+%28photo+courtesy+of+Cincinnati+Milacron%29..jpg +0 -0
- cc12m_data/images_vqa/00491934---I6FTIDWLJRFPHAK4ZSZH4RQGDA.jpg +0 -0
- cc12m_data/images_vqa/00507360---MushroomRisotto1.jpg +0 -0
- cc12m_data/images_vqa/00602376---%20essay-example-writing-comparison-compare-contrast-how-to-write-poem-examples-of%20-1024x768.jpg +0 -0
- cc12m_data/images_vqa/00606341---dog-coloring-book-detailed-dogs-page2.jpg +0 -0
- cc12m_data/images_vqa/00697411---dream-house-swimming-pool-large-133359636.jpg +0 -0
- cc12m_data/images_vqa/00923733---white-commercial-van-road-motion-blurred-d-illustration-custom-designed-brandless-87900010.jpg +0 -0
- cc12m_data/images_vqa/01023838---fundraising-photo.jpg +0 -0
- cc12m_data/images_vqa/01053356---522a16b60d3f226fff652671cdde6011.jpg +0 -0
- cc12m_data/images_vqa/01157077---female-fruit-picker-worker-basket-woodcut-illustration-wearing-bandana-holding-viewed-side-set-white-61675986.jpg +0 -0
- cc12m_data/images_vqa/01275377---Young-the-Giant.jpg +0 -0
- cc12m_data/images_vqa/01327794---40250345161_452dc56b11_z.jpg +0 -0
- cc12m_data/images_vqa/01648721---170420062908YDYA.jpg +0 -0
- cc12m_data/images_vqa/01760795---The-Size-of-the-buildings-in-Shekou-are-in-direct-relation-to-the-time-it-takes-to-accomplish-tasks.jpg +0 -0
- cc12m_data/images_vqa/01761366---fresh-salad-flying-vegetables-ingredients-isolated-white-background-48747892.jpg +0 -0
- cc12m_data/images_vqa/01772764---business-woman-winner-standing-first-600w-254762824.jpg +0 -0
- cc12m_data/images_vqa/01813337---cd4df5cb43d087533e89b12c9805409e.jpg +0 -0
- cc12m_data/images_vqa/02034916---XKC6GGK5NDECNBAD5WAQUWOO5U.jpg +0 -0
- cc12m_data/images_vqa/02175876---DL2-4i4.jpg +0 -0
- cc12m_data/images_vqa/02217469---mount-macedon-victoria-australia-macedon-regional-park-region-photographed-by-karen-robinson-_march-29-2020_042-1.jpg +0 -0
- cc12m_data/images_vqa/02243845---heritage-heritage-matte-stainless-steel-sink-undermount-5_2048x.jpg +0 -0
- cc12m_data/images_vqa/02335328---margaret-and-alexander-potters-houses-1948.jpg +0 -0
- cc12m_data/images_vqa/02520451---Gower-1.jpg +0 -0
- cc12m_data/images_vqa/02912250---a-black-panther-has-been-spotted-in-weald-park-brentwood-essex-britain-shutterstock-editorial-618335e.jpg +0 -0
- cc12m_data/images_vqa/03257347---looking-farther-afield-article-size.jpg +0 -0
- cc12m_data/images_vqa/03271226---beneath-the-borealis-092517-a-very-bear-y-summer-kennicott-valley-virga.jpg +0 -0
- cc12m_data/images_vqa/03307717---tumblr_m9d4xkRM5n1rypkpio1_1280.jpg +0 -0
- cc12m_data/images_vqa/03360735---Warm-Bacon-Dip-EasyLowCarb-2.jpg +0 -0
- cc12m_data/images_vqa/03394023---m_5e36e15f2169682519441e34.jpg +0 -0
- cc12m_data/images_vqa/03401066---160328-capitol-police-mn-1530_bd68b01f1d7f1c3ab99eafa503930569.fit-760w.jpg +0 -0
- cc12m_data/images_vqa/03598306---20400805522_fba017bc51_b.jpg +0 -0
- cc12m_data/images_vqa/03618296---A+pink+and+grey+woven+baskets+sits+on+top+of+a+clear+side+table.jpg +0 -0
- cc12m_data/images_vqa/04331097---108_1504859395_24.jpg +0 -0
- cc12m_data/images_vqa/04334412---Pants-All-match-Professional-Harlan-Women-s-Loose-Skinny-High-Waist-New-2019-Suit-Summer-Leisure-Pants-2077.jpg +0 -0
- cc12m_data/images_vqa/04358571---41-Travelex.jpg +0 -0
- cc12m_data/images_vqa/04361362---square-stone-benches-around-fire-pit-outside-residential-building-sunny-day-pathways-plants-can-also-be-seen-homes-171086572.jpg +0 -0
- cc12m_data/images_vqa/04530023---49305383277_29d4a34f37_h.jpg +0 -0
- cc12m_data/images_vqa/04749808---thinkstockphotos-1858212351.jpg +0 -0
app.py
CHANGED
@@ -1,183 +1,52 @@
|
|
1 |
-
import
|
2 |
import os
|
3 |
-
from io import BytesIO
|
4 |
-
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
import numpy as np
|
7 |
-
import pandas as pd
|
8 |
import streamlit as st
|
9 |
-
from
|
10 |
-
from PIL import Image
|
11 |
-
from streamlit.elements import markdown
|
12 |
-
|
13 |
-
from model.flax_clip_vision_bert.modeling_clip_vision_bert import (
|
14 |
-
FlaxCLIPVisionBertForSequenceClassification,
|
15 |
-
)
|
16 |
-
from session import _get_state
|
17 |
-
from utils import (
|
18 |
-
get_text_attributes,
|
19 |
-
get_top_5_predictions,
|
20 |
-
get_transformed_image,
|
21 |
-
plotly_express_horizontal_bar_plot,
|
22 |
-
translate_labels,
|
23 |
-
)
|
24 |
-
|
25 |
-
state = _get_state()
|
26 |
-
|
27 |
-
|
28 |
-
@st.cache(persist=True)
|
29 |
-
def load_model(ckpt):
|
30 |
-
return FlaxCLIPVisionBertForSequenceClassification.from_pretrained(ckpt)
|
31 |
-
|
32 |
-
|
33 |
-
@st.cache(persist=True)
|
34 |
-
def predict(transformed_image, question_inputs):
|
35 |
-
return np.array(model(pixel_values=transformed_image, **question_inputs)[0][0])
|
36 |
-
|
37 |
-
|
38 |
-
def softmax(logits):
|
39 |
-
return np.exp(logits) / np.sum(np.exp(logits), axis=0)
|
40 |
-
|
41 |
|
42 |
def read_markdown(path, parent="./sections/"):
|
43 |
with open(os.path.join(parent, path)) as f:
|
44 |
return f.read()
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
"es": "Spanish",
|
53 |
-
}
|
54 |
-
|
55 |
-
with open("answer_reverse_mapping.json") as f:
|
56 |
-
answer_reverse_mapping = json.load(f)
|
57 |
-
|
58 |
-
|
59 |
-
st.set_page_config(
|
60 |
-
page_title="Multilingual VQA",
|
61 |
-
layout="wide",
|
62 |
-
initial_sidebar_state="collapsed",
|
63 |
-
page_icon="./misc/mvqa-logo-3-white.png",
|
64 |
-
)
|
65 |
-
|
66 |
-
st.title("Multilingual Visual Question Answering")
|
67 |
-
st.write(
|
68 |
-
"[Gunjan Chhablani](https://huggingface.co/gchhablani), [Bhavitvya Malik](https://huggingface.co/bhavitvyamalik)"
|
69 |
-
)
|
70 |
-
|
71 |
-
image_col, intro_col = st.beta_columns([3, 8])
|
72 |
-
image_col.image("./misc/mvqa-logo-3-white.png", use_column_width="always")
|
73 |
-
intro_col.write(read_markdown("intro.md"))
|
74 |
-
with st.beta_expander("Usage"):
|
75 |
-
st.write(read_markdown("usage.md"))
|
76 |
-
|
77 |
-
with st.beta_expander("Article"):
|
78 |
-
st.write(read_markdown("abstract.md"))
|
79 |
-
st.write(read_markdown("caveats.md"))
|
80 |
-
st.write("## Methodology")
|
81 |
-
col1, col2 = st.beta_columns([1,1])
|
82 |
-
col1.image(
|
83 |
-
"./misc/article/resized/Multilingual-VQA.png",
|
84 |
-
caption="Masked LM model for Image-text Pretraining.",
|
85 |
)
|
86 |
-
col2.markdown(read_markdown("pretraining.md"))
|
87 |
-
st.markdown(read_markdown("finetuning.md"))
|
88 |
-
st.write(read_markdown("challenges.md"))
|
89 |
-
st.write(read_markdown("social_impact.md"))
|
90 |
-
st.write(read_markdown("references.md"))
|
91 |
-
st.write(read_markdown("checkpoints.md"))
|
92 |
-
st.write(read_markdown("acknowledgements.md"))
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
state.question = dummy_data.loc[first_index, "question"].strip("- ")
|
99 |
-
state.answer_label = dummy_data.loc[first_index, "answer_label"]
|
100 |
-
state.question_lang_id = dummy_data.loc[first_index, "lang_id"]
|
101 |
-
state.answer_lang_id = dummy_data.loc[first_index, "lang_id"]
|
102 |
-
|
103 |
-
image_path = os.path.join("resized_images", state.image_file)
|
104 |
-
image = plt.imread(image_path)
|
105 |
-
state.image = image
|
106 |
-
|
107 |
-
# col1, col2, col3 = st.beta_columns([3,3,3])
|
108 |
-
|
109 |
-
if st.button(
|
110 |
-
"Get a random example",
|
111 |
-
help="Get a random example from the 100 `seeded` image-text pairs.",
|
112 |
-
):
|
113 |
-
sample = dummy_data.sample(1).reset_index()
|
114 |
-
state.image_file = sample.loc[0, "image_file"]
|
115 |
-
state.question = sample.loc[0, "question"].strip("- ")
|
116 |
-
state.answer_label = sample.loc[0, "answer_label"]
|
117 |
-
state.question_lang_id = sample.loc[0, "lang_id"]
|
118 |
-
state.answer_lang_id = sample.loc[0, "lang_id"]
|
119 |
-
|
120 |
-
image_path = os.path.join("resized_images", state.image_file)
|
121 |
-
image = plt.imread(image_path)
|
122 |
-
state.image = image
|
123 |
-
|
124 |
-
# col2.write("OR")
|
125 |
-
|
126 |
-
# uploaded_file = col2.file_uploader(
|
127 |
-
# "Upload your image",
|
128 |
-
# type=["png", "jpg", "jpeg"],
|
129 |
-
# help="Upload a file of your choosing.",
|
130 |
-
# )
|
131 |
-
# if uploaded_file is not None:
|
132 |
-
# state.image_file = os.path.join("images/val2014", uploaded_file.name)
|
133 |
-
# state.image = np.array(Image.open(uploaded_file))
|
134 |
-
|
135 |
-
transformed_image = get_transformed_image(state.image)
|
136 |
-
|
137 |
-
new_col1, new_col2 = st.beta_columns([5, 5])
|
138 |
-
|
139 |
-
# Display Image
|
140 |
-
new_col1.image(state.image, use_column_width="always")
|
141 |
-
|
142 |
-
|
143 |
-
# Display Question
|
144 |
-
question = new_col2.text_input(
|
145 |
-
label="Question",
|
146 |
-
value=state.question,
|
147 |
-
help="Type your question regarding the image above in one of the four languages.",
|
148 |
-
)
|
149 |
-
new_col2.markdown(
|
150 |
-
f"""**English Translation**: {question if state.question_lang_id == "en" else translate(question, 'en')}"""
|
151 |
-
)
|
152 |
-
|
153 |
-
question_inputs = get_text_attributes(question)
|
154 |
-
|
155 |
-
# Select Language
|
156 |
-
options = ["en", "de", "es", "fr"]
|
157 |
-
state.answer_lang_id = new_col2.selectbox(
|
158 |
-
"Answer Language",
|
159 |
-
index=options.index(state.answer_lang_id),
|
160 |
-
options=options,
|
161 |
-
format_func=lambda x: code_to_name[x],
|
162 |
-
help="The language to be used to show the top-5 labels.",
|
163 |
-
)
|
164 |
-
|
165 |
-
actual_answer = answer_reverse_mapping[str(state.answer_label)]
|
166 |
-
new_col2.markdown(
|
167 |
-
"**Actual Answer**: "
|
168 |
-
+ translate_labels([actual_answer], state.answer_lang_id)[0]
|
169 |
-
+ " ("
|
170 |
-
+ actual_answer
|
171 |
-
+ ")"
|
172 |
-
)
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
with st.
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from apps import mlm, vqa
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
3 |
import streamlit as st
|
4 |
+
from multiapp import MultiApp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def read_markdown(path, parent="./sections/"):
|
7 |
with open(os.path.join(parent, path)) as f:
|
8 |
return f.read()
|
9 |
|
10 |
+
def main():
|
11 |
+
st.set_page_config(
|
12 |
+
page_title="Multilingual VQA",
|
13 |
+
layout="wide",
|
14 |
+
initial_sidebar_state="collapsed",
|
15 |
+
page_icon="./misc/mvqa-logo-3-white.png",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
st.title("Multilingual Visual Question Answering")
|
19 |
+
st.write(
|
20 |
+
"[Gunjan Chhablani](https://huggingface.co/gchhablani), [Bhavitvya Malik](https://huggingface.co/bhavitvyamalik)"
|
21 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
image_col, intro_col = st.beta_columns([3, 8])
|
24 |
+
image_col.image("./misc/mvqa-logo-3-white.png", use_column_width="always")
|
25 |
+
intro_col.write(read_markdown("intro.md"))
|
26 |
+
with st.beta_expander("Usage"):
|
27 |
+
st.write(read_markdown("usage.md"))
|
28 |
+
|
29 |
+
with st.beta_expander("Article"):
|
30 |
+
st.write(read_markdown("abstract.md"))
|
31 |
+
st.write(read_markdown("caveats.md"))
|
32 |
+
st.write("## Methodology")
|
33 |
+
col1, col2 = st.beta_columns([1,1])
|
34 |
+
col1.image(
|
35 |
+
"./misc/article/Multilingual-VQA.png",
|
36 |
+
caption="Masked LM model for Image-text Pretraining.",
|
37 |
+
)
|
38 |
+
col2.markdown(read_markdown("pretraining.md"))
|
39 |
+
st.markdown(read_markdown("finetuning.md"))
|
40 |
+
st.write(read_markdown("challenges.md"))
|
41 |
+
st.write(read_markdown("social_impact.md"))
|
42 |
+
st.write(read_markdown("references.md"))
|
43 |
+
st.write(read_markdown("checkpoints.md"))
|
44 |
+
st.write(read_markdown("acknowledgements.md"))
|
45 |
+
|
46 |
+
app = MultiApp()
|
47 |
+
app.add_app("Visual Question Answering", vqa.app)
|
48 |
+
app.add_app("Mask Filling", mlm.app)
|
49 |
+
app.run()
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
main()
|
apps/mlm.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from .utils import (
|
3 |
+
get_text_attributes,
|
4 |
+
get_top_5_predictions,
|
5 |
+
get_transformed_image,
|
6 |
+
plotly_express_horizontal_bar_plot,
|
7 |
+
translate_labels,
|
8 |
+
bert_tokenizer
|
9 |
+
)
|
10 |
+
|
11 |
+
import streamlit as st
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
import os
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
|
17 |
+
from session import _get_state
|
18 |
+
|
19 |
+
|
20 |
+
from .model.flax_clip_vision_bert.modeling_clip_vision_bert import (
|
21 |
+
FlaxCLIPVisionBertForMaskedLM,
|
22 |
+
)
|
23 |
+
|
24 |
+
def softmax(logits):
|
25 |
+
return np.exp(logits) / np.sum(np.exp(logits), axis=0)
|
26 |
+
|
27 |
+
def app():
|
28 |
+
state = _get_state()
|
29 |
+
|
30 |
+
@st.cache(persist=False)
|
31 |
+
def predict(transformed_image, caption_inputs):
|
32 |
+
outputs = state.model(pixel_values=transformed_image, **caption_inputs)
|
33 |
+
indices = np.where(caption_inputs['input_ids']==bert_tokenizer.mask_token_id)
|
34 |
+
preds = outputs.logits[indices][0]
|
35 |
+
sorted_indices = np.argsort(preds)[::-1] # Get reverse sorted scores
|
36 |
+
top_5_indices = sorted_indices[:5]
|
37 |
+
top_5_tokens = bert_tokenizer.convert_ids_to_tokens(top_5_indices)
|
38 |
+
top_5_scores = np.array(preds[top_5_indices])
|
39 |
+
return top_5_tokens, top_5_scores
|
40 |
+
|
41 |
+
|
42 |
+
@st.cache(persist=False)
|
43 |
+
def load_model(ckpt):
|
44 |
+
return FlaxCLIPVisionBertForMaskedLM.from_pretrained(ckpt)
|
45 |
+
|
46 |
+
mlm_checkpoints = ['flax-community/clip-vision-bert-cc12m-70k']
|
47 |
+
dummy_data = pd.read_csv("cc12m_data/vqa_val.tsv", sep="\t")
|
48 |
+
|
49 |
+
first_index = 20
|
50 |
+
# Init Session State
|
51 |
+
if state.image_file is None:
|
52 |
+
state.image_file = dummy_data.loc[first_index, "image_file"]
|
53 |
+
caption = dummy_data.loc[first_index, "caption"].strip("- ")
|
54 |
+
ids = bert_tokenizer(caption)
|
55 |
+
ids[np.random.randint(0, len(ids))] = bert_tokenizer.mask_token_id
|
56 |
+
state.caption = bert_tokenizer.decode(ids)
|
57 |
+
state.caption_lang_id = dummy_data.loc[first_index, "lang_id"]
|
58 |
+
|
59 |
+
image_path = os.path.join("cc12m_data/images_vqa", state.image_file)
|
60 |
+
image = plt.imread(image_path)
|
61 |
+
state.image = image
|
62 |
+
|
63 |
+
if state.model is None:
|
64 |
+
# Display Top-5 Predictions
|
65 |
+
with st.spinner("Loading model..."):
|
66 |
+
state.model = load_model(mlm_checkpoints[0])
|
67 |
+
|
68 |
+
if st.button(
|
69 |
+
"Get a random example",
|
70 |
+
help="Get a random example from the 100 `seeded` image-text pairs.",
|
71 |
+
):
|
72 |
+
sample = dummy_data.sample(1).reset_index()
|
73 |
+
state.image_file = sample.loc[0, "image_file"]
|
74 |
+
caption = sample.loc[0, "caption"].strip("- ")
|
75 |
+
ids = bert_tokenizer(caption)
|
76 |
+
ids[np.random.randint(0, len(ids))] = bert_tokenizer.mask_token_id
|
77 |
+
state.caption = bert_tokenizer.decode(ids)
|
78 |
+
state.caption_lang_id = sample.loc[0, "lang_id"]
|
79 |
+
|
80 |
+
image_path = os.path.join("cc12m_data/images_vqa", state.image_file)
|
81 |
+
image = plt.imread(image_path)
|
82 |
+
state.image = image
|
83 |
+
|
84 |
+
transformed_image = get_transformed_image(state.image)
|
85 |
+
|
86 |
+
new_col1, new_col2 = st.beta_columns([5, 5])
|
87 |
+
|
88 |
+
# Display Image
|
89 |
+
new_col1.image(state.image, use_column_width="always")
|
90 |
+
|
91 |
+
|
92 |
+
# Display caption
|
93 |
+
new_col2.write("Write your text with exactly one [MASK] token.")
|
94 |
+
caption = new_col2.text_input(
|
95 |
+
label="Text",
|
96 |
+
value=state.caption,
|
97 |
+
help="Type your masked caption regarding the image above in one of the four languages.",
|
98 |
+
)
|
99 |
+
|
100 |
+
caption_inputs = get_text_attributes(caption)
|
101 |
+
|
102 |
+
# Display Top-5 Predictions
|
103 |
+
|
104 |
+
with st.spinner("Predicting..."):
|
105 |
+
logits = predict(transformed_image, dict(caption_inputs))
|
106 |
+
logits = softmax(logits)
|
107 |
+
labels, values = get_top_5_predictions(logits)
|
108 |
+
fig = plotly_express_horizontal_bar_plot(values, labels)
|
109 |
+
st.plotly_chart(fig, use_container_width=True)
|
{model β apps/model}/__init__.py
RENAMED
File without changes
|
{model β apps/model}/flax_clip_vision_bert/__init__.py
RENAMED
File without changes
|
{model β apps/model}/flax_clip_vision_bert/configuration_clip_vision_bert.py
RENAMED
File without changes
|
{model β apps/model}/flax_clip_vision_bert/modeling_clip_vision_bert.py
RENAMED
File without changes
|
utils.py β apps/utils.py
RENAMED
@@ -3,8 +3,7 @@ import json
|
|
3 |
import numpy as np
|
4 |
import plotly.express as px
|
5 |
import torch
|
6 |
-
from
|
7 |
-
from torchvision.io import ImageReadMode, read_image
|
8 |
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
|
9 |
from torchvision.transforms.functional import InterpolationMode
|
10 |
from transformers import BertTokenizerFast
|
@@ -41,15 +40,17 @@ def get_transformed_image(image):
|
|
41 |
|
42 |
bert_tokenizer = BertTokenizerFast.from_pretrained("bert-base-multilingual-uncased")
|
43 |
|
44 |
-
|
45 |
def get_text_attributes(text):
|
46 |
return bert_tokenizer([text], return_token_type_ids=True, return_tensors="np")
|
47 |
|
48 |
|
49 |
-
def get_top_5_predictions(logits, answer_reverse_mapping):
|
50 |
indices = np.argsort(logits)[-5:]
|
51 |
values = logits[indices]
|
52 |
-
|
|
|
|
|
|
|
53 |
return labels, values
|
54 |
|
55 |
|
|
|
3 |
import numpy as np
|
4 |
import plotly.express as px
|
5 |
import torch
|
6 |
+
from torchvision.io import read_image
|
|
|
7 |
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
|
8 |
from torchvision.transforms.functional import InterpolationMode
|
9 |
from transformers import BertTokenizerFast
|
|
|
40 |
|
41 |
bert_tokenizer = BertTokenizerFast.from_pretrained("bert-base-multilingual-uncased")
|
42 |
|
|
|
43 |
def get_text_attributes(text):
|
44 |
return bert_tokenizer([text], return_token_type_ids=True, return_tensors="np")
|
45 |
|
46 |
|
47 |
+
def get_top_5_predictions(logits, answer_reverse_mapping=None):
|
48 |
indices = np.argsort(logits)[-5:]
|
49 |
values = logits[indices]
|
50 |
+
if answer_reverse_mapping is not None:
|
51 |
+
labels = [answer_reverse_mapping[str(i)] for i in indices]
|
52 |
+
else:
|
53 |
+
labels = bert_tokenizer.convert_ids_to_tokens(indices)
|
54 |
return labels, values
|
55 |
|
56 |
|
apps/vqa.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from .utils import (
|
3 |
+
get_text_attributes,
|
4 |
+
get_top_5_predictions,
|
5 |
+
get_transformed_image,
|
6 |
+
plotly_express_horizontal_bar_plot,
|
7 |
+
translate_labels,
|
8 |
+
)
|
9 |
+
|
10 |
+
import streamlit as st
|
11 |
+
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
import os
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import json
|
16 |
+
|
17 |
+
from mtranslate import translate
|
18 |
+
from session import _get_state
|
19 |
+
|
20 |
+
|
21 |
+
from .model.flax_clip_vision_bert.modeling_clip_vision_bert import (
|
22 |
+
FlaxCLIPVisionBertForSequenceClassification,
|
23 |
+
)
|
24 |
+
|
25 |
+
def softmax(logits):
|
26 |
+
return np.exp(logits) / np.sum(np.exp(logits), axis=0)
|
27 |
+
|
28 |
+
def app():
|
29 |
+
state = _get_state()
|
30 |
+
|
31 |
+
@st.cache(persist=True)
|
32 |
+
def predict(transformed_image, question_inputs):
|
33 |
+
return np.array(state.model(pixel_values=transformed_image, **question_inputs)[0][0])
|
34 |
+
|
35 |
+
|
36 |
+
@st.cache(persist=True)
|
37 |
+
def load_model(ckpt):
|
38 |
+
return FlaxCLIPVisionBertForSequenceClassification.from_pretrained(ckpt)
|
39 |
+
|
40 |
+
vqa_checkpoints = ["flax-community/clip-vision-bert-vqa-ft-6k"] # TODO: Maybe add more checkpoints?
|
41 |
+
dummy_data = pd.read_csv("dummy_vqa_multilingual.tsv", sep="\t")
|
42 |
+
code_to_name = {
|
43 |
+
"en": "English",
|
44 |
+
"fr": "French",
|
45 |
+
"de": "German",
|
46 |
+
"es": "Spanish",
|
47 |
+
}
|
48 |
+
|
49 |
+
|
50 |
+
with open("answer_reverse_mapping.json") as f:
|
51 |
+
answer_reverse_mapping = json.load(f)
|
52 |
+
|
53 |
+
first_index = 20
|
54 |
+
# Init Session State
|
55 |
+
if state.image_file is None:
|
56 |
+
state.image_file = dummy_data.loc[first_index, "image_file"]
|
57 |
+
state.question = dummy_data.loc[first_index, "question"].strip("- ")
|
58 |
+
state.answer_label = dummy_data.loc[first_index, "answer_label"]
|
59 |
+
state.question_lang_id = dummy_data.loc[first_index, "lang_id"]
|
60 |
+
state.answer_lang_id = dummy_data.loc[first_index, "lang_id"]
|
61 |
+
|
62 |
+
image_path = os.path.join("resized_images", state.image_file)
|
63 |
+
image = plt.imread(image_path)
|
64 |
+
state.image = image
|
65 |
+
|
66 |
+
if state.model is None:
|
67 |
+
# Display Top-5 Predictions
|
68 |
+
with st.spinner("Loading model..."):
|
69 |
+
state.model = load_model(vqa_checkpoints[0])
|
70 |
+
|
71 |
+
if st.button(
|
72 |
+
"Get a random example",
|
73 |
+
help="Get a random example from the 100 `seeded` image-text pairs.",
|
74 |
+
):
|
75 |
+
sample = dummy_data.sample(1).reset_index()
|
76 |
+
state.image_file = sample.loc[0, "image_file"]
|
77 |
+
state.question = sample.loc[0, "question"].strip("- ")
|
78 |
+
state.answer_label = sample.loc[0, "answer_label"]
|
79 |
+
state.question_lang_id = sample.loc[0, "lang_id"]
|
80 |
+
state.answer_lang_id = sample.loc[0, "lang_id"]
|
81 |
+
|
82 |
+
image_path = os.path.join("resized_images", state.image_file)
|
83 |
+
image = plt.imread(image_path)
|
84 |
+
state.image = image
|
85 |
+
|
86 |
+
transformed_image = get_transformed_image(state.image)
|
87 |
+
|
88 |
+
new_col1, new_col2 = st.beta_columns([5, 5])
|
89 |
+
|
90 |
+
# Display Image
|
91 |
+
new_col1.image(state.image, use_column_width="always")
|
92 |
+
|
93 |
+
|
94 |
+
# Display Question
|
95 |
+
question = new_col2.text_input(
|
96 |
+
label="Question",
|
97 |
+
value=state.question,
|
98 |
+
help="Type your question regarding the image above in one of the four languages.",
|
99 |
+
)
|
100 |
+
new_col2.markdown(
|
101 |
+
f"""**English Translation**: {question if state.question_lang_id == "en" else translate(question, 'en')}"""
|
102 |
+
)
|
103 |
+
|
104 |
+
question_inputs = get_text_attributes(question)
|
105 |
+
|
106 |
+
# Select Language
|
107 |
+
options = ["en", "de", "es", "fr"]
|
108 |
+
state.answer_lang_id = new_col2.selectbox(
|
109 |
+
"Answer Language",
|
110 |
+
index=options.index(state.answer_lang_id),
|
111 |
+
options=options,
|
112 |
+
format_func=lambda x: code_to_name[x],
|
113 |
+
help="The language to be used to show the top-5 labels.",
|
114 |
+
)
|
115 |
+
|
116 |
+
actual_answer = answer_reverse_mapping[str(state.answer_label)]
|
117 |
+
new_col2.markdown(
|
118 |
+
"**Actual Answer**: "
|
119 |
+
+ translate_labels([actual_answer], state.answer_lang_id)[0]
|
120 |
+
+ " ("
|
121 |
+
+ actual_answer
|
122 |
+
+ ")"
|
123 |
+
)
|
124 |
+
|
125 |
+
with st.spinner("Predicting..."):
|
126 |
+
logits = predict(transformed_image, dict(question_inputs))
|
127 |
+
logits = softmax(logits)
|
128 |
+
labels, values = get_top_5_predictions(logits, answer_reverse_mapping)
|
129 |
+
translated_labels = translate_labels(labels, state.answer_lang_id)
|
130 |
+
fig = plotly_express_horizontal_bar_plot(values, translated_labels)
|
131 |
+
st.plotly_chart(fig, use_container_width=True)
|
cc12m_data/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
cc12m_data/images_vqa/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
cc12m_data/images_vqa/00212055---Wax_cylinder_in_Dictaphone.jpg
ADDED
cc12m_data/images_vqa/00315853---041bdd212f5b5d3d30cbc4ccf523f1a3.jpg
ADDED
cc12m_data/images_vqa/00328633---Metal+chips+fly+in+a+high+speed+turning+operation+performed+on+a+computer+numerical+control+turning+center+%28photo+courtesy+of+Cincinnati+Milacron%29..jpg
ADDED
cc12m_data/images_vqa/00491934---I6FTIDWLJRFPHAK4ZSZH4RQGDA.jpg
ADDED
cc12m_data/images_vqa/00507360---MushroomRisotto1.jpg
ADDED
cc12m_data/images_vqa/00602376---%20essay-example-writing-comparison-compare-contrast-how-to-write-poem-examples-of%20-1024x768.jpg
ADDED
cc12m_data/images_vqa/00606341---dog-coloring-book-detailed-dogs-page2.jpg
ADDED
cc12m_data/images_vqa/00697411---dream-house-swimming-pool-large-133359636.jpg
ADDED
cc12m_data/images_vqa/00923733---white-commercial-van-road-motion-blurred-d-illustration-custom-designed-brandless-87900010.jpg
ADDED
cc12m_data/images_vqa/01023838---fundraising-photo.jpg
ADDED
cc12m_data/images_vqa/01053356---522a16b60d3f226fff652671cdde6011.jpg
ADDED
cc12m_data/images_vqa/01157077---female-fruit-picker-worker-basket-woodcut-illustration-wearing-bandana-holding-viewed-side-set-white-61675986.jpg
ADDED
cc12m_data/images_vqa/01275377---Young-the-Giant.jpg
ADDED
cc12m_data/images_vqa/01327794---40250345161_452dc56b11_z.jpg
ADDED
cc12m_data/images_vqa/01648721---170420062908YDYA.jpg
ADDED
cc12m_data/images_vqa/01760795---The-Size-of-the-buildings-in-Shekou-are-in-direct-relation-to-the-time-it-takes-to-accomplish-tasks.jpg
ADDED
cc12m_data/images_vqa/01761366---fresh-salad-flying-vegetables-ingredients-isolated-white-background-48747892.jpg
ADDED
cc12m_data/images_vqa/01772764---business-woman-winner-standing-first-600w-254762824.jpg
ADDED
cc12m_data/images_vqa/01813337---cd4df5cb43d087533e89b12c9805409e.jpg
ADDED
cc12m_data/images_vqa/02034916---XKC6GGK5NDECNBAD5WAQUWOO5U.jpg
ADDED
cc12m_data/images_vqa/02175876---DL2-4i4.jpg
ADDED
cc12m_data/images_vqa/02217469---mount-macedon-victoria-australia-macedon-regional-park-region-photographed-by-karen-robinson-_march-29-2020_042-1.jpg
ADDED
cc12m_data/images_vqa/02243845---heritage-heritage-matte-stainless-steel-sink-undermount-5_2048x.jpg
ADDED
cc12m_data/images_vqa/02335328---margaret-and-alexander-potters-houses-1948.jpg
ADDED
cc12m_data/images_vqa/02520451---Gower-1.jpg
ADDED
cc12m_data/images_vqa/02912250---a-black-panther-has-been-spotted-in-weald-park-brentwood-essex-britain-shutterstock-editorial-618335e.jpg
ADDED
cc12m_data/images_vqa/03257347---looking-farther-afield-article-size.jpg
ADDED
cc12m_data/images_vqa/03271226---beneath-the-borealis-092517-a-very-bear-y-summer-kennicott-valley-virga.jpg
ADDED
cc12m_data/images_vqa/03307717---tumblr_m9d4xkRM5n1rypkpio1_1280.jpg
ADDED
cc12m_data/images_vqa/03360735---Warm-Bacon-Dip-EasyLowCarb-2.jpg
ADDED
cc12m_data/images_vqa/03394023---m_5e36e15f2169682519441e34.jpg
ADDED
cc12m_data/images_vqa/03401066---160328-capitol-police-mn-1530_bd68b01f1d7f1c3ab99eafa503930569.fit-760w.jpg
ADDED
cc12m_data/images_vqa/03598306---20400805522_fba017bc51_b.jpg
ADDED
cc12m_data/images_vqa/03618296---A+pink+and+grey+woven+baskets+sits+on+top+of+a+clear+side+table.jpg
ADDED
cc12m_data/images_vqa/04331097---108_1504859395_24.jpg
ADDED
cc12m_data/images_vqa/04334412---Pants-All-match-Professional-Harlan-Women-s-Loose-Skinny-High-Waist-New-2019-Suit-Summer-Leisure-Pants-2077.jpg
ADDED
cc12m_data/images_vqa/04358571---41-Travelex.jpg
ADDED
cc12m_data/images_vqa/04361362---square-stone-benches-around-fire-pit-outside-residential-building-sunny-day-pathways-plants-can-also-be-seen-homes-171086572.jpg
ADDED
cc12m_data/images_vqa/04530023---49305383277_29d4a34f37_h.jpg
ADDED
cc12m_data/images_vqa/04749808---thinkstockphotos-1858212351.jpg
ADDED