Spaces:
Runtime error
Runtime error
File size: 3,785 Bytes
44c11f2 c399665 ba57ea8 ffe19d9 53ddc87 f54892c b3c9da2 b929de0 919efff 66b1416 b3c9da2 0b8741b b3c9da2 d63921e 3bd4b4e b3c9da2 919efff b3c9da2 919efff b3c9da2 919efff 29e00f0 44c11f2 b3c9da2 44c11f2 8527e35 919efff 8527e35 919efff 8527e35 76f1340 b929de0 76f1340 919efff b3c9da2 8527e35 919efff 8527e35 919efff 8527e35 76f1340 b929de0 76f1340 919efff b3c9da2 44c11f2 919efff 0b8741b 287b7cd 919efff 7f8d82b 97cc78d 53ddc87 919efff b3c9da2 0b8741b 919efff b3c9da2 53ddc87 b3c9da2 53ddc87 919efff b3c9da2 919efff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import streamlit as st
from apps.utils import read_markdown
from .streamlit_tensorboard import st_tensorboard, kill_tensorboard
from .utils import Toc
def app(state=None):
#kill_tensorboard()
toc = Toc()
st.info("Welcome to our Multilingual-VQA demo. Please use the navigation sidebar to move to our demo, or scroll below to read all about our project. 🤗 In case the sidebar isn't properly rendered, please change to a smaller window size and back to full screen.")
st.header("Table of Contents")
toc.placeholder()
toc.header("Introduction and Motivation")
st.info("**News**: Two days back, a paper using CLIP-Vision and BERT has been posted on arXiv! The paper uses LXMERT objectives and achieves 80% on the English VQAv2 dataset. It would be interesting to see how it performs on our multilingual dataset. Check it out here: https://arxiv.org/pdf/2107.06383.pdf")
st.write(read_markdown("intro/intro_part_1.md"))
with st.beta_expander("FasterRCNN Approach"):
st.write(read_markdown("intro/faster_rcnn_approach.md"))
st.write(read_markdown("intro/intro_part_2.md"))
toc.subheader("Novel Contributions")
st.write(read_markdown("intro/contributions.md"))
toc.header("Methodology")
toc.subheader("Pre-training")
st.write(read_markdown("pretraining/intro.md"))
# col1, col2 = st.beta_columns([5,5])
st.image(
"./misc/article/Multilingual-VQA.png",
caption="Masked LM model for Image-text Pre-training.",
)
toc.subsubheader("MLM Dataset")
st.write(read_markdown("pretraining/data.md"))
toc.subsubheader("MLM Model")
st.write(read_markdown("pretraining/model.md"))
toc.subsubheader("MLM Training Logs")
st.write("Click on the expandable region to see the TensorBoard logs.")
st.info("In case the TensorBoard logs are not displayed, please visit this link: https://huggingface.co/flax-community/multilingual-vqa-pt-ckpts/tensorboard")
with st.beta_expander("MLM TensorBoard Logs"):
st_tensorboard(logdir='./logs/pretrain_logs', port=6006)
toc.subheader("Finetuning")
toc.subsubheader("VQA Dataset")
st.write(read_markdown("finetuning/data.md"))
toc.subsubheader("VQA Model")
st.write(read_markdown("finetuning/model.md"))
toc.subsubheader("VQA Training Logs")
st.write("Click on the expandable region to see the TensorBoard logs.")
st.info("In case the TensorBoard logs are not displayed, please visit this link: https://huggingface.co/flax-community/multilingual-vqa-pt-60k-ft/tensorboard")
with st.beta_expander("VQA TensorBoard Logs"):
st_tensorboard(logdir='./logs/finetune_logs', port=6007)
toc.header("Challenges and Technical Difficulties")
st.write(read_markdown("challenges.md"))
toc.header("Limitations and Bias")
st.write(read_markdown("limitations.md"))
toc.header("Conclusion, Future Work, and Social Impact")
toc.subheader("Conclusion")
st.write(read_markdown("conclusion_future_work/conclusion.md"))
toc.subheader("Future Work")
st.write(read_markdown("conclusion_future_work/future_work.md"))
toc.subheader("Social Impact")
st.write(read_markdown("conclusion_future_work/social_impact.md"))
toc.header("References")
toc.subheader("Papers")
st.write(read_markdown("references/papers.md"))
toc.subheader("Useful Links")
st.write(read_markdown("references/useful_links.md"))
toc.header("Checkpoints")
st.write(read_markdown("checkpoints/checkpoints.md"))
toc.subheader("Other Checkpoints")
st.write(read_markdown("checkpoints/other_checkpoints.md"))
toc.header("Acknowledgements")
st.write(read_markdown("acknowledgements.md"))
toc.generate() |