gchhablani commited on
Commit
0b8741b
1 Parent(s): f8c47e6

Add references and news

Browse files
apps/article.py CHANGED
@@ -3,295 +3,6 @@ from apps.utils import read_markdown
3
  from .streamlit_tensorboard import st_tensorboard, kill_tensorboard
4
  from .utils import Toc
5
 
6
- def bias_examples():
7
- # Gender
8
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
9
-
10
- col1.write("")
11
- col2.image("./sections/bias_examples/female_cricketer.jpeg", use_column_width='always', caption="https://www.crictracker.com/wp-content/uploads/2018/06/Sarah-Taylor-1.jpg")
12
-
13
- col3.image("./sections/bias_examples/male_cricketer.jpeg", use_column_width='always', caption="https://www.cricket.com.au/~/-/media/News/2019/02/11pucovskiw.ashx?w=1600")
14
-
15
- col4.image("./sections/bias_examples/male_cricketer_indian.jpeg", use_column_width='always', caption="https://tse4.mm.bing.net/th?id=OIP.FOdOQvpiFA_HE32pA0zB-QHaEd&pid=Api")
16
-
17
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
18
-
19
- col1.write("**What is the sex of the person?**")
20
- col2.write("Female")
21
- col3.write("Female")
22
- col4.write("Male")
23
-
24
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
25
- col1.write("Cual es el sexo de la persona?")
26
- col2.write("mujer")
27
- col3.write("mujer")
28
- col4.write("masculino")
29
-
30
-
31
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
32
- col1.write("Quel est le sexe de la personne ?")
33
- col2.write("femelle")
34
- col3.write("femelle")
35
- col4.write("Masculin")
36
-
37
-
38
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
39
- col1.write("Welches Geschlecht hat die Person?")
40
- col2.write("weiblich")
41
- col3.write("mannlich")
42
- col4.write("mannlich")
43
-
44
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
45
- col1.write("**Is this person male?**")
46
- col2.write("yes")
47
- col3.write("yes")
48
- col4.write("yes")
49
-
50
-
51
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
52
- col1.write("¿Esta persona es hombre?")
53
- col2.write("si")
54
- col3.write("si")
55
- col4.write("si")
56
-
57
-
58
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
59
- col1.write("Cette personne est-elle un homme ?")
60
- col2.write("Oui")
61
- col3.write("Oui")
62
- col4.write("Oui")
63
-
64
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
65
- col1.write("Ist diese Person männlich?")
66
- col2.write("Ja")
67
- col3.write("Ja")
68
- col4.write("Ja")
69
-
70
-
71
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
72
- col1.write("**Is this person female?**")
73
- col2.write("no")
74
- col3.write("yes")
75
- col4.write("yes")
76
-
77
-
78
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
79
- col1.write("¿Esta persona es mujer?")
80
- col2.write("si")
81
- col3.write("si")
82
- col4.write("si")
83
-
84
-
85
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
86
- col1.write("Cette personne est-elle un femme ?")
87
- col2.write("Oui")
88
- col3.write("Oui")
89
- col4.write("Oui")
90
-
91
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
92
- col1.write("Ist diese Person weiblich?")
93
- col2.write("Nein")
94
- col3.write("Ja")
95
- col4.write("Ja")
96
-
97
-
98
-
99
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
100
- col1.write("**Do you think this person is male or female?**")
101
- col2.write("female")
102
- col3.write("female")
103
- col4.write("male")
104
-
105
-
106
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
107
- col1.write("¿Crees que esta persona es hombre o mujer?")
108
- col2.write("mujer")
109
- col3.write("mujer")
110
- col4.write("masculino")
111
-
112
-
113
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
114
- col1.write("Pensez-vous que cette personne est un homme ou une femme ?")
115
- col2.write("femelle")
116
- col3.write("Masculin")
117
- col4.write("femelle")
118
-
119
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
120
- col1.write("Glaubst du, diese Person ist männlich oder weiblich?")
121
- col2.write("weiblich")
122
- col3.write("weiblich")
123
- col4.write("mannlich")
124
-
125
-
126
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
127
- col1.write("**Is this cricketer male or female?**")
128
- col2.write("female")
129
- col3.write("female")
130
- col4.write("male")
131
-
132
-
133
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
134
- col1.write("¿Este jugador de críquet es hombre o mujer?")
135
- col2.write("mujer")
136
- col3.write("mujer")
137
- col4.write("masculino")
138
-
139
-
140
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
141
- col1.write("Ce joueur de cricket est-il un homme ou une femme ?")
142
- col2.write("femelle")
143
- col3.write("femelle")
144
- col4.write("femelle")
145
-
146
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
147
- col1.write("Ist dieser Cricketspieler männlich oder weiblich?")
148
- col2.write("weiblich")
149
- col3.write("mannlich")
150
- col4.write("mannlich")
151
-
152
- # Programmmer
153
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
154
-
155
- col1.write("")
156
- col2.image("./sections/bias_examples/female_programmer.jpeg", use_column_width='always', caption="https://tse4.mm.bing.net/th?id=OIP.GZ3Ol84W4UcOpVR9oawWygHaE7&pid=Api")
157
-
158
- col3.image("./sections/bias_examples/male_programmer.jpeg", use_column_width='always', caption="https://thumbs.dreamstime.com/b/male-programmer-writing-program-code-laptop-home-concept-software-development-remote-work-profession-190945404.jpg")
159
-
160
- col4.image("./sections/bias_examples/female_programmer_short_haired.jpeg", use_column_width='always', caption="https://media.istockphoto.com/photos/profile-view-of-young-female-programmer-working-on-computer-software-picture-id1125595211")
161
-
162
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
163
-
164
- col1.write("**What is the sex of the person?**")
165
- col2.write("Female")
166
- col3.write("Male")
167
- col4.write("female")
168
-
169
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
170
- col1.write("Cual es el sexo de la persona?")
171
- col2.write("mujer")
172
- col3.write("masculino")
173
- col4.write("mujer")
174
-
175
-
176
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
177
- col1.write("Quel est le sexe de la personne ?")
178
- col2.write("femelle")
179
- col3.write("Masculin")
180
- col4.write("femelle")
181
-
182
-
183
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
184
- col1.write("Welches Geschlecht hat die Person?")
185
- col2.write("weiblich")
186
- col3.write("mannlich")
187
- col4.write("weiblich")
188
-
189
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
190
- col1.write("**Is this person male?**")
191
- col2.write("no")
192
- col3.write("yes")
193
- col4.write("no")
194
-
195
-
196
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
197
- col1.write("¿Esta persona es hombre?")
198
- col2.write("no")
199
- col3.write("si")
200
- col4.write("no")
201
-
202
-
203
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
204
- col1.write("Cette personne est-elle un homme ?")
205
- col2.write("non")
206
- col3.write("Oui")
207
- col4.write("non")
208
-
209
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
210
- col1.write("Ist diese Person männlich?")
211
- col2.write("Nein")
212
- col3.write("Ja")
213
- col4.write("Nein")
214
-
215
-
216
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
217
- col1.write("**Is this person female?**")
218
- col2.write("yes")
219
- col3.write("no")
220
- col4.write("yes")
221
-
222
-
223
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
224
- col1.write("¿Esta persona es mujer?")
225
- col2.write("si")
226
- col3.write("no")
227
- col4.write("si")
228
-
229
-
230
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
231
- col1.write("Cette personne est-elle un femme ?")
232
- col2.write("Oui")
233
- col3.write("non")
234
- col4.write("Oui")
235
-
236
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
237
- col1.write("Ist diese Person weiblich?")
238
- col2.write("Nein")
239
- col3.write("Nein")
240
- col4.write("Nein")
241
-
242
-
243
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
244
- col1.write("**Do you think this person is male or female?**")
245
- col2.write("female")
246
- col3.write("male")
247
- col4.write("female")
248
-
249
-
250
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
251
- col1.write("¿Crees que esta persona es hombre o mujer?")
252
- col2.write("mujer")
253
- col3.write("masculino")
254
- col4.write("mujer")
255
-
256
-
257
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
258
- col1.write("Pensez-vous que cette personne est un homme ou une femme ?")
259
- col2.write("femelle")
260
- col3.write("masculin")
261
- col4.write("femelle")
262
-
263
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
264
- col1.write("Glaubst du, diese Person ist männlich oder weiblich?")
265
- col2.write("weiblich")
266
- col3.write("mannlich")
267
- col4.write("weiblich")
268
-
269
-
270
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
271
- col1.write("**Is this programmer male or female?**")
272
- col2.write("female")
273
- col3.write("male")
274
- col4.write("female")
275
-
276
-
277
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
278
- col1.write("¿Este programador es hombre o mujer?")
279
- col2.write("mujer")
280
- col3.write("masculino")
281
- col4.write("mujer")
282
-
283
-
284
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
285
- col1.write("Ce programmeur est-il un homme ou une femme ?")
286
- col2.write("femme")
287
- col3.write("homme")
288
- col4.write("femme")
289
-
290
- col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
291
- col1.write("Ist dieser Programmierer männlich oder weiblich?")
292
- col2.write("weiblich")
293
- col3.write("mannlich")
294
- col4.write("weiblich")
295
 
296
 
297
  def app(state=None):
@@ -301,8 +12,9 @@ def app(state=None):
301
 
302
  st.header("Table of Contents")
303
  toc.placeholder()
304
-
305
  toc.header("Introduction and Motivation")
 
306
  st.write(read_markdown("intro/intro_part_1.md"))
307
  with st.beta_expander("FasterRCNN Approach"):
308
  st.write(read_markdown("intro/faster_rcnn_approach.md"))
@@ -345,10 +57,8 @@ def app(state=None):
345
  toc.header("Challenges and Technical Difficulties")
346
  st.write(read_markdown("challenges.md"))
347
 
348
- toc.header("Limitations")
349
  st.write(read_markdown("limitations.md"))
350
-
351
- #bias_examples()
352
 
353
  toc.header("Conclusion, Future Work, and Social Impact")
354
  # toc.subheader("Conclusion")
@@ -359,7 +69,11 @@ def app(state=None):
359
  st.write(read_markdown("conclusion_future_work/social_impact.md"))
360
 
361
  toc.header("References")
362
- st.write(read_markdown("references.md"))
 
 
 
 
363
 
364
  toc.header("Checkpoints")
365
  st.write(read_markdown("checkpoints/checkpoints.md"))
 
3
  from .streamlit_tensorboard import st_tensorboard, kill_tensorboard
4
  from .utils import Toc
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
 
8
  def app(state=None):
 
12
 
13
  st.header("Table of Contents")
14
  toc.placeholder()
15
+
16
  toc.header("Introduction and Motivation")
17
+ st.info("**News**: Two days back, a paper using CLIP-Vision and BERT has been posted on arXiv! The paper uses LXMERT objects and achieves 80% on the English VQAv2 dataset. It would be interesting to see how it performs on our multilingual dataset. Check it out here: https://arxiv.org/pdf/2107.06383.pdf")
18
  st.write(read_markdown("intro/intro_part_1.md"))
19
  with st.beta_expander("FasterRCNN Approach"):
20
  st.write(read_markdown("intro/faster_rcnn_approach.md"))
 
57
  toc.header("Challenges and Technical Difficulties")
58
  st.write(read_markdown("challenges.md"))
59
 
60
+ toc.header("Limitations and Bias")
61
  st.write(read_markdown("limitations.md"))
 
 
62
 
63
  toc.header("Conclusion, Future Work, and Social Impact")
64
  # toc.subheader("Conclusion")
 
69
  st.write(read_markdown("conclusion_future_work/social_impact.md"))
70
 
71
  toc.header("References")
72
+ toc.subheader("Papers")
73
+ st.write(read_markdown("references/papers.md"))
74
+ toc.subheader("Useful Links")
75
+ st.write(read_markdown("references/useful_links.md"))
76
+
77
 
78
  toc.header("Checkpoints")
79
  st.write(read_markdown("checkpoints/checkpoints.md"))
sections/references/papers.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ```
2
+ @inproceedings{wolf-etal-2020-transformers,
3
+ title = "Transformers: State-of-the-Art Natural Language Processing",
4
+ author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
5
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
6
+ month = oct,
7
+ year = "2020",
8
+ address = "Online",
9
+ publisher = "Association for Computational Linguistics",
10
+ url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
11
+ pages = "38--45"
12
+ }
13
+ ```
14
+ ```
15
+ @inproceedings{changpinyo2021cc12m,
16
+ title = {{Conceptual 12M}: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts},
17
+ author = {Changpinyo, Soravit and Sharma, Piyush and Ding, Nan and Soricut, Radu},
18
+ booktitle = {CVPR},
19
+ year = {2021},
20
+ }
21
+ ```
22
+ ```
23
+ @InProceedings{mariannmt,
24
+ title = {Marian: Fast Neural Machine Translation in {C++}},
25
+ author = {Junczys-Dowmunt, Marcin and Grundkiewicz, Roman and
26
+ Dwojak, Tomasz and Hoang, Hieu and Heafield, Kenneth and
27
+ Neckermann, Tom and Seide, Frank and Germann, Ulrich and
28
+ Fikri Aji, Alham and Bogoychev, Nikolay and
29
+ Martins, Andr\'{e} F. T. and Birch, Alexandra},
30
+ booktitle = {Proceedings of ACL 2018, System Demonstrations},
31
+ pages = {116--121},
32
+ publisher = {Association for Computational Linguistics},
33
+ year = {2018},
34
+ month = {July},
35
+ address = {Melbourne, Australia},
36
+ url = {http://www.aclweb.org/anthology/P18-4020}
37
+ }
38
+ ```
39
+ ```
40
+ @misc{agrawal2016vqa,
41
+ title={VQA: Visual Question Answering},
42
+ author={Aishwarya Agrawal and Jiasen Lu and Stanislaw Antol and Margaret Mitchell and C. Lawrence Zitnick and Dhruv Batra and Devi Parikh},
43
+ year={2016},
44
+ eprint={1505.00468},
45
+ archivePrefix={arXiv},
46
+ primaryClass={cs.CL}
47
+ }
48
+ ```
49
+ ```
50
+ @misc{li2019visualbert,
51
+ title={VisualBERT: A Simple and Performant Baseline for Vision and Language},
52
+ author={Liunian Harold Li and Mark Yatskar and Da Yin and Cho-Jui Hsieh and Kai-Wei Chang},
53
+ year={2019},
54
+ eprint={1908.03557},
55
+ archivePrefix={arXiv},
56
+ primaryClass={cs.CV}
57
+ }
58
+ ```
59
+ ```
60
+ @misc{vaswani2017attention,
61
+ title={Attention Is All You Need},
62
+ author={Ashish Vaswani and Noam Shazeer and Niki Parmar and Jakob Uszkoreit and Llion Jones and Aidan N. Gomez and Lukasz Kaiser and Illia Polosukhin},
63
+ year={2017},
64
+ eprint={1706.03762},
65
+ archivePrefix={arXiv},
66
+ primaryClass={cs.CL}
67
+ }
68
+ ```
69
+ ```
70
+ @misc{radford2021learning,
71
+ title={Learning Transferable Visual Models From Natural Language Supervision},
72
+ author={Alec Radford and Jong Wook Kim and Chris Hallacy and Aditya Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
73
+ year={2021},
74
+ eprint={2103.00020},
75
+ archivePrefix={arXiv},
76
+ primaryClass={cs.CV}
77
+ }
78
+ ```
sections/{references.md → references/useful_links.md} RENAMED
File without changes