File size: 25,677 Bytes
b582ef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8ee7ff
b582ef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import warnings
from typing import Callable, List, Optional, Union

import PIL
import torch
import torchvision.transforms.functional as TF
from packaging import version
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection

from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import deprecate, logging, randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class MVDiffusionImagePipeline(DiffusionPipeline):
    r"""
    Pipeline to generate image variations from an input image using Stable Diffusion.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
            Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
    """
    # TODO: feature_extractor is required to encode images (if they are in PIL format),
    # we should give a descriptive message if the pipeline doesn't have one.
    _optional_components = ["safety_checker"]

    def __init__(
        self,
        vae: AutoencoderKL,
        image_encoder: CLIPVisionModelWithProjection,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        requires_safety_checker: bool = True,
        camera_embedding_type: str = 'e_de_da_sincos',
        num_views: int = 4
    ):
        super().__init__()

        if safety_checker is None and requires_safety_checker:
            logger.warn(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse("0.9.0.dev0")
        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
                " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )
            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

        self.register_modules(
            vae=vae,
            image_encoder=image_encoder,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.register_to_config(requires_safety_checker=requires_safety_checker)

        self.camera_embedding_type: str = camera_embedding_type
        self.num_views: int = num_views

    def _encode_image(self, image_pil, device, num_images_per_prompt, do_classifier_free_guidance):
        dtype = next(self.image_encoder.parameters()).dtype

        image_pt = self.feature_extractor(images=image_pil, return_tensors="pt").pixel_values
        image_pt = image_pt.to(device=device, dtype=dtype)
        image_embeddings = self.image_encoder(image_pt).image_embeds
        image_embeddings = image_embeddings.unsqueeze(1)

        # duplicate image embeddings for each generation per prompt, using mps friendly method
        # Note: repeat differently from official pipelines
        # B1B2B3B4 -> B1B2B3B4B1B2B3B4
        bs_embed, seq_len, _ = image_embeddings.shape
        image_embeddings = image_embeddings.repeat(num_images_per_prompt, 1, 1)

        if do_classifier_free_guidance:
            negative_prompt_embeds = torch.zeros_like(image_embeddings)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])
        
        image_pt = torch.stack([TF.to_tensor(img) for img in image_pil], dim=0).to(device).to(dtype)
        image_pt = image_pt * 2.0 - 1.0
        image_latents = self.vae.encode(image_pt).latent_dist.mode() * self.vae.config.scaling_factor
        # Note: repeat differently from official pipelines
        # B1B2B3B4 -> B1B2B3B4B1B2B3B4        
        image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1)

        if do_classifier_free_guidance:
            image_latents = torch.cat([torch.zeros_like(image_latents), image_latents])

        return image_embeddings, image_latents

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if torch.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
        warnings.warn(
            "The decode_latents method is deprecated and will be removed in a future version. Please"
            " use VaeImageProcessor instead",
            FutureWarning,
        )
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(self, image, height, width, callback_steps):
        if (
            not isinstance(image, torch.Tensor)
            and not isinstance(image, PIL.Image.Image)
            and not isinstance(image, list)
        ):
            raise ValueError(
                "`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
                f" {type(image)}"
            )

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def prepare_camera_embedding(self, camera_embedding: Union[float, torch.Tensor], do_classifier_free_guidance, num_images_per_prompt=1):
        # (B, 3)
        camera_embedding = camera_embedding.to(dtype=self.unet.dtype, device=self.unet.device)

        if self.camera_embedding_type == 'e_de_da_sincos':
            # (B, 6)
            camera_embedding = torch.cat([
                torch.sin(camera_embedding),
                torch.cos(camera_embedding)
            ], dim=-1)
            assert self.unet.config.class_embed_type == 'projection'
            assert self.unet.config.projection_class_embeddings_input_dim == 6 or self.unet.config.projection_class_embeddings_input_dim == 10
        else:
            raise NotImplementedError
        
        # Note: repeat differently from official pipelines
        # B1B2B3B4 -> B1B2B3B4B1B2B3B4        
        camera_embedding = camera_embedding.repeat(num_images_per_prompt, 1)     

        if do_classifier_free_guidance:
            camera_embedding = torch.cat([
                camera_embedding,
                camera_embedding
            ], dim=0)
        
        return camera_embedding    

    @torch.no_grad()
    def __call__(
        self,
        image: Union[List[PIL.Image.Image], torch.FloatTensor],
        # elevation_cond: torch.FloatTensor,
        # elevation: torch.FloatTensor,
        # azimuth: torch.FloatTensor, 
        camera_embedding: torch.FloatTensor,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        normal_cond: Optional[Union[List[PIL.Image.Image], torch.FloatTensor]] = None,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
                Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
                [`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference. This parameter is modulated by `strength`.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.

        Examples:

        ```py
        from diffusers import StableDiffusionImageVariationPipeline
        from PIL import Image
        from io import BytesIO
        import requests

        pipe = StableDiffusionImageVariationPipeline.from_pretrained(
            "lambdalabs/sd-image-variations-diffusers", revision="v2.0"
        )
        pipe = pipe.to("cuda")

        url = "https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200"

        response = requests.get(url)
        image = Image.open(BytesIO(response.content)).convert("RGB")

        out = pipe(image, num_images_per_prompt=3, guidance_scale=15)
        out["images"][0].save("result.jpg")
        ```
        """
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(image, height, width, callback_steps)


        # 2. Define call parameters
        if isinstance(image, list):
            batch_size = len(image)
        else:
            batch_size = image.shape[0]
        assert batch_size >= self.num_views and batch_size % self.num_views == 0
        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale != 1.0

        # 3. Encode input image
        if isinstance(image, list):
            image_pil = image
        elif isinstance(image, torch.Tensor):
            image_pil = [TF.to_pil_image(image[i]) for i in range(image.shape[0])]
        image_embeddings, image_latents = self._encode_image(image_pil, device, num_images_per_prompt, do_classifier_free_guidance)

        if normal_cond is not None:
            if isinstance(normal_cond, list):
                normal_cond_pil = normal_cond
            elif isinstance(normal_cond, torch.Tensor):
                normal_cond_pil = [TF.to_pil_image(normal_cond[i]) for i in range(normal_cond.shape[0])]
            _, image_latents = self._encode_image(normal_cond_pil, device, num_images_per_prompt, do_classifier_free_guidance)


        # assert len(elevation_cond) == batch_size and len(elevation) == batch_size and len(azimuth) == batch_size
        # camera_embeddings = self.prepare_camera_condition(elevation_cond, elevation, azimuth, do_classifier_free_guidance=do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt)
        assert len(camera_embedding) == batch_size
        camera_embeddings = self.prepare_camera_embedding(camera_embedding, do_classifier_free_guidance=do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt)

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.out_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            image_embeddings.dtype,
            device,
            generator,
            latents,
        )
        
        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = torch.cat([
                    latent_model_input, image_latents
                ], dim=1)
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=image_embeddings, class_labels=camera_embeddings).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        if not output_type == "latent":
            if num_channels_latents == 8:
                latents = torch.cat([latents[:, :4], latents[:, 4:]], dim=0)

            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, device, image_embeddings.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)