Spaces:
Running
on
L4
Running
on
L4
flamehaze1115
commited on
Commit
Β·
e8ee7ff
1
Parent(s):
28dbcfe
Upload 33 files
Browse files- README.md +1 -1
- app.py +123 -60
- mvdiffusion/data/__pycache__/normal_utils.cpython-39.pyc +0 -0
- mvdiffusion/data/__pycache__/single_image_dataset.cpython-39.pyc +0 -0
- mvdiffusion/data/single_image_dataset.py +37 -28
- mvdiffusion/models/__pycache__/transformer_mv2d.cpython-39.pyc +0 -0
- mvdiffusion/models/__pycache__/unet_mv2d_blocks.cpython-39.pyc +0 -0
- mvdiffusion/models/__pycache__/unet_mv2d_condition.cpython-39.pyc +0 -0
- mvdiffusion/pipelines/__pycache__/pipeline_mvdiffusion_image.cpython-39.pyc +0 -0
- mvdiffusion/pipelines/pipeline_mvdiffusion_image.py +1 -1
- requirements.txt +1 -1
- utils/__pycache__/misc.cpython-39.pyc +0 -0
- utils/misc.py +7 -7
README.md
CHANGED
@@ -3,7 +3,7 @@ title: Wonder3D
|
|
3 |
emoji: π
|
4 |
colorFrom: indigo
|
5 |
colorTo: pink
|
6 |
-
sdk:
|
7 |
sdk_version: 3.43.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
3 |
emoji: π
|
4 |
colorFrom: indigo
|
5 |
colorTo: pink
|
6 |
+
sdk: docker
|
7 |
sdk_version: 3.43.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
app.py
CHANGED
@@ -15,6 +15,7 @@ from mvdiffusion.models.unet_mv2d_condition import UNetMV2DConditionModel
|
|
15 |
from mvdiffusion.data.single_image_dataset import SingleImageDataset as MVDiffusionDataset
|
16 |
from mvdiffusion.pipelines.pipeline_mvdiffusion_image import MVDiffusionImagePipeline
|
17 |
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
|
|
|
18 |
|
19 |
@dataclass
|
20 |
class TestConfig:
|
@@ -53,6 +54,13 @@ iret = [
|
|
53 |
for x in sorted(os.listdir(iret_base))
|
54 |
]
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
class SAMAPI:
|
58 |
predictor = None
|
@@ -62,7 +70,7 @@ class SAMAPI:
|
|
62 |
def get_instance(sam_checkpoint=None):
|
63 |
if SAMAPI.predictor is None:
|
64 |
if sam_checkpoint is None:
|
65 |
-
sam_checkpoint = "
|
66 |
if not os.path.exists(sam_checkpoint):
|
67 |
os.makedirs('tmp', exist_ok=True)
|
68 |
urllib.request.urlretrieve(
|
@@ -164,6 +172,8 @@ def segment_6imgs(imgs):
|
|
164 |
return Image.fromarray(result)
|
165 |
|
166 |
def pack_6imgs(imgs):
|
|
|
|
|
167 |
result = numpy.concatenate([
|
168 |
numpy.concatenate([imgs[0], imgs[1]], axis=1),
|
169 |
numpy.concatenate([imgs[2], imgs[3]], axis=1),
|
@@ -221,15 +231,15 @@ def check_dependencies():
|
|
221 |
|
222 |
|
223 |
@st.cache_resource
|
224 |
-
def load_wonder3d_pipeline(
|
225 |
# Load scheduler, tokenizer and models.
|
226 |
# noise_scheduler = DDPMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler")
|
227 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", revision=cfg.revision)
|
228 |
feature_extractor = CLIPImageProcessor.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="feature_extractor", revision=cfg.revision)
|
229 |
vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", revision=cfg.revision)
|
230 |
unet = UNetMV2DConditionModel.from_pretrained_2d(cfg.pretrained_unet_path, subfolder="unet", revision=cfg.revision, **cfg.unet_from_pretrained_kwargs)
|
|
|
231 |
|
232 |
-
weight_dtype = torch.float16
|
233 |
# Move text_encode and vae to gpu and cast to weight_dtype
|
234 |
image_encoder.to(dtype=weight_dtype)
|
235 |
vae.to(dtype=weight_dtype)
|
@@ -246,6 +256,53 @@ def load_wonder3d_pipeline(cfg):
|
|
246 |
sys.main_lock = threading.Lock()
|
247 |
return pipeline
|
248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
from utils.misc import load_config
|
251 |
from omegaconf import OmegaConf
|
@@ -257,26 +314,33 @@ schema = OmegaConf.structured(TestConfig)
|
|
257 |
cfg = OmegaConf.merge(schema, cfg)
|
258 |
|
259 |
check_dependencies()
|
260 |
-
pipeline = load_wonder3d_pipeline(
|
261 |
SAMAPI.get_instance()
|
262 |
torch.set_grad_enabled(False)
|
263 |
|
264 |
-
st.title("Wonder3D
|
265 |
# st.caption("For faster inference without waiting in queue, you may clone the space and run it yourself.")
|
266 |
-
|
267 |
pic = st.file_uploader("Upload an Image", key='imageinput', type=['png', 'jpg', 'webp'])
|
268 |
left, right = st.columns(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
with left:
|
270 |
-
|
271 |
with right:
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
if st.button("Submit"):
|
279 |
-
submit = True
|
280 |
results_container = st.container()
|
281 |
sample_got = image_examples(iret, 4, 'rimageinput')
|
282 |
if sample_got:
|
@@ -284,48 +348,47 @@ if sample_got:
|
|
284 |
with results_container:
|
285 |
if sample_got or submit:
|
286 |
prog.progress(0.03, "Waiting in Queue...")
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
img =
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
prog.progress(1.0, "Idle")
|
|
|
15 |
from mvdiffusion.data.single_image_dataset import SingleImageDataset as MVDiffusionDataset
|
16 |
from mvdiffusion.pipelines.pipeline_mvdiffusion_image import MVDiffusionImagePipeline
|
17 |
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
|
18 |
+
from einops import rearrange
|
19 |
|
20 |
@dataclass
|
21 |
class TestConfig:
|
|
|
54 |
for x in sorted(os.listdir(iret_base))
|
55 |
]
|
56 |
|
57 |
+
def save_image(tensor):
|
58 |
+
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
59 |
+
# pdb.set_trace()
|
60 |
+
im = Image.fromarray(ndarr)
|
61 |
+
return ndarr
|
62 |
+
|
63 |
+
weight_dtype = torch.float16
|
64 |
|
65 |
class SAMAPI:
|
66 |
predictor = None
|
|
|
70 |
def get_instance(sam_checkpoint=None):
|
71 |
if SAMAPI.predictor is None:
|
72 |
if sam_checkpoint is None:
|
73 |
+
sam_checkpoint = "sam_pt/sam_vit_h_4b8939.pth"
|
74 |
if not os.path.exists(sam_checkpoint):
|
75 |
os.makedirs('tmp', exist_ok=True)
|
76 |
urllib.request.urlretrieve(
|
|
|
172 |
return Image.fromarray(result)
|
173 |
|
174 |
def pack_6imgs(imgs):
|
175 |
+
import pdb
|
176 |
+
# pdb.set_trace()
|
177 |
result = numpy.concatenate([
|
178 |
numpy.concatenate([imgs[0], imgs[1]], axis=1),
|
179 |
numpy.concatenate([imgs[2], imgs[3]], axis=1),
|
|
|
231 |
|
232 |
|
233 |
@st.cache_resource
|
234 |
+
def load_wonder3d_pipeline():
|
235 |
# Load scheduler, tokenizer and models.
|
236 |
# noise_scheduler = DDPMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler")
|
237 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", revision=cfg.revision)
|
238 |
feature_extractor = CLIPImageProcessor.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="feature_extractor", revision=cfg.revision)
|
239 |
vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", revision=cfg.revision)
|
240 |
unet = UNetMV2DConditionModel.from_pretrained_2d(cfg.pretrained_unet_path, subfolder="unet", revision=cfg.revision, **cfg.unet_from_pretrained_kwargs)
|
241 |
+
unet.enable_xformers_memory_efficient_attention()
|
242 |
|
|
|
243 |
# Move text_encode and vae to gpu and cast to weight_dtype
|
244 |
image_encoder.to(dtype=weight_dtype)
|
245 |
vae.to(dtype=weight_dtype)
|
|
|
256 |
sys.main_lock = threading.Lock()
|
257 |
return pipeline
|
258 |
|
259 |
+
from mvdiffusion.data.single_image_dataset import SingleImageDataset
|
260 |
+
def prepare_data(single_image):
|
261 |
+
dataset = SingleImageDataset(
|
262 |
+
root_dir = None,
|
263 |
+
num_views = 6,
|
264 |
+
img_wh=[256, 256],
|
265 |
+
bg_color='white',
|
266 |
+
crop_size=crop_size,
|
267 |
+
single_image=single_image
|
268 |
+
)
|
269 |
+
return dataset[0]
|
270 |
+
|
271 |
+
|
272 |
+
def run_pipeline(pipeline, batch, guidance_scale, seed):
|
273 |
+
|
274 |
+
pipeline.set_progress_bar_config(disable=True)
|
275 |
+
|
276 |
+
generator = torch.Generator(device=pipeline.unet.device).manual_seed(seed)
|
277 |
+
|
278 |
+
# repeat (2B, Nv, 3, H, W)
|
279 |
+
imgs_in = torch.cat([batch['imgs_in']]*2, dim=0).to(weight_dtype)
|
280 |
+
|
281 |
+
# (2B, Nv, Nce)
|
282 |
+
camera_embeddings = torch.cat([batch['camera_embeddings']]*2, dim=0).to(weight_dtype)
|
283 |
+
|
284 |
+
task_embeddings = torch.cat([batch['normal_task_embeddings'], batch['color_task_embeddings']], dim=0).to(weight_dtype)
|
285 |
+
|
286 |
+
camera_embeddings = torch.cat([camera_embeddings, task_embeddings], dim=-1).to(weight_dtype)
|
287 |
+
|
288 |
+
# (B*Nv, 3, H, W)
|
289 |
+
imgs_in = rearrange(imgs_in, "Nv C H W -> (Nv) C H W")
|
290 |
+
# (B*Nv, Nce)
|
291 |
+
# camera_embeddings = rearrange(camera_embeddings, "B Nv Nce -> (B Nv) Nce")
|
292 |
+
|
293 |
+
out = pipeline(
|
294 |
+
imgs_in, camera_embeddings, generator=generator, guidance_scale=guidance_scale,
|
295 |
+
output_type='pt', num_images_per_prompt=1, **cfg.pipe_validation_kwargs
|
296 |
+
).images
|
297 |
+
|
298 |
+
bsz = out.shape[0] // 2
|
299 |
+
normals_pred = out[:bsz]
|
300 |
+
images_pred = out[bsz:]
|
301 |
+
|
302 |
+
normals_pred = [save_image(normals_pred[i]) for i in range(bsz)]
|
303 |
+
images_pred = [save_image(images_pred[i]) for i in range(bsz)]
|
304 |
+
|
305 |
+
return normals_pred, images_pred
|
306 |
|
307 |
from utils.misc import load_config
|
308 |
from omegaconf import OmegaConf
|
|
|
314 |
cfg = OmegaConf.merge(schema, cfg)
|
315 |
|
316 |
check_dependencies()
|
317 |
+
pipeline = load_wonder3d_pipeline()
|
318 |
SAMAPI.get_instance()
|
319 |
torch.set_grad_enabled(False)
|
320 |
|
321 |
+
st.title("Wonder3D: Single Image to 3D using Cross-Domain Diffusion")
|
322 |
# st.caption("For faster inference without waiting in queue, you may clone the space and run it yourself.")
|
323 |
+
|
324 |
pic = st.file_uploader("Upload an Image", key='imageinput', type=['png', 'jpg', 'webp'])
|
325 |
left, right = st.columns(2)
|
326 |
+
# with left:
|
327 |
+
# rem_input_bg = st.checkbox("Remove Input Background")
|
328 |
+
# with right:
|
329 |
+
# rem_output_bg = st.checkbox("Remove Output Background")
|
330 |
+
with left:
|
331 |
+
num_inference_steps = st.slider("Number of Inference Steps", 15, 100, 50)
|
332 |
+
# st.caption("Diffusion Steps. For general real or synthetic objects, around 28 is enough. For objects with delicate details such as faces (either realistic or illustration), you may need 75 or more steps.")
|
333 |
+
with right:
|
334 |
+
cfg_scale = st.slider("Classifier Free Guidance Scale", 1.0, 10.0, 3.0)
|
335 |
with left:
|
336 |
+
seed = int(st.text_input("Seed", "42"))
|
337 |
with right:
|
338 |
+
crop_size = int(st.text_input("crop_size", "192"))
|
339 |
+
# submit = False
|
340 |
+
# if st.button("Submit"):
|
341 |
+
# submit = True
|
342 |
+
submit = True
|
343 |
+
prog = st.progress(0.0, "Idle")
|
|
|
|
|
344 |
results_container = st.container()
|
345 |
sample_got = image_examples(iret, 4, 'rimageinput')
|
346 |
if sample_got:
|
|
|
348 |
with results_container:
|
349 |
if sample_got or submit:
|
350 |
prog.progress(0.03, "Waiting in Queue...")
|
351 |
+
|
352 |
+
seed = int(seed)
|
353 |
+
torch.manual_seed(seed)
|
354 |
+
img = Image.open(pic)
|
355 |
+
|
356 |
+
data = prepare_data(img)
|
357 |
+
|
358 |
+
if max(img.size) > 1280:
|
359 |
+
w, h = img.size
|
360 |
+
w = round(1280 / max(img.size) * w)
|
361 |
+
h = round(1280 / max(img.size) * h)
|
362 |
+
img = img.resize((w, h))
|
363 |
+
left, right = st.columns(2)
|
364 |
+
with left:
|
365 |
+
st.caption("Input Image")
|
366 |
+
st.image(img)
|
367 |
+
prog.progress(0.1, "Preparing Inputs")
|
368 |
+
|
369 |
+
with right:
|
370 |
+
img = segment_img(img)
|
371 |
+
st.caption("Input (Background Removed)")
|
372 |
+
st.image(img)
|
373 |
+
|
374 |
+
img = expand2square(img, (127, 127, 127, 0))
|
375 |
+
# pipeline.set_progress_bar_config(disable=True)
|
376 |
+
prog.progress(0.3, "Run cross-domain diffusion model")
|
377 |
+
normals_pred, images_pred = run_pipeline(pipeline, data, cfg_scale, seed)
|
378 |
+
prog.progress(0.9, "finishing")
|
379 |
+
left, right = st.columns(2)
|
380 |
+
with left:
|
381 |
+
st.caption("Generated Normals")
|
382 |
+
st.image(pack_6imgs(normals_pred))
|
383 |
+
|
384 |
+
with right:
|
385 |
+
st.caption("Generated Color Images")
|
386 |
+
st.image(pack_6imgs(images_pred))
|
387 |
+
# if rem_output_bg:
|
388 |
+
# normals_pred = segment_6imgs(normals_pred)
|
389 |
+
# images_pred = segment_6imgs(images_pred)
|
390 |
+
# with right:
|
391 |
+
# st.image(normals_pred)
|
392 |
+
# st.image(images_pred)
|
393 |
+
# st.caption("Result (Background Removed)")
|
394 |
+
prog.progress(1.0, "Idle")
|
|
mvdiffusion/data/__pycache__/normal_utils.cpython-39.pyc
ADDED
Binary file (1.52 kB). View file
|
|
mvdiffusion/data/__pycache__/single_image_dataset.cpython-39.pyc
ADDED
Binary file (8.06 kB). View file
|
|
mvdiffusion/data/single_image_dataset.py
CHANGED
@@ -84,6 +84,7 @@ class SingleImageDataset(Dataset):
|
|
84 |
img_wh: Tuple[int, int],
|
85 |
bg_color: str,
|
86 |
crop_size: int = 224,
|
|
|
87 |
num_validation_samples: Optional[int] = None,
|
88 |
filepaths: Optional[list] = None,
|
89 |
cond_type: Optional[str] = None
|
@@ -92,7 +93,7 @@ class SingleImageDataset(Dataset):
|
|
92 |
If you pass in a root directory it will be searched for images
|
93 |
ending in ext (ext can be a list)
|
94 |
"""
|
95 |
-
self.root_dir = Path(root_dir)
|
96 |
self.num_views = num_views
|
97 |
self.img_wh = img_wh
|
98 |
self.crop_size = crop_size
|
@@ -110,32 +111,37 @@ class SingleImageDataset(Dataset):
|
|
110 |
|
111 |
self.fix_cam_poses = self.load_fixed_poses() # world2cam matrix
|
112 |
|
113 |
-
if filepaths is None:
|
114 |
-
|
115 |
-
|
116 |
-
else:
|
117 |
-
|
118 |
-
|
119 |
-
if self.cond_type == None:
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
else:
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
|
133 |
# load all images
|
134 |
self.all_images = []
|
135 |
self.all_alphas = []
|
136 |
bg_color = self.get_bg_color()
|
137 |
-
for file in self.file_list:
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
139 |
self.all_images.append(image)
|
140 |
self.all_alphas.append(alpha)
|
141 |
|
@@ -196,9 +202,12 @@ class SingleImageDataset(Dataset):
|
|
196 |
return bg_color
|
197 |
|
198 |
|
199 |
-
def load_image(self, img_path, bg_color, return_type='np'):
|
200 |
# pil always returns uint8
|
201 |
-
|
|
|
|
|
|
|
202 |
image_size = self.img_wh[0]
|
203 |
|
204 |
if self.crop_size!=-1:
|
@@ -210,11 +219,11 @@ class SingleImageDataset(Dataset):
|
|
210 |
h, w = ref_img_.height, ref_img_.width
|
211 |
scale = self.crop_size / max(h, w)
|
212 |
h_, w_ = int(scale * h), int(scale * w)
|
213 |
-
ref_img_ = ref_img_.resize((w_, h_)
|
214 |
image_input = add_margin(ref_img_, size=image_size)
|
215 |
else:
|
216 |
image_input = add_margin(image_input, size=max(image_input.height, image_input.width))
|
217 |
-
image_input = image_input.resize((image_size, image_size)
|
218 |
|
219 |
# img = scale_and_place_object(img, self.scale_ratio)
|
220 |
img = np.array(image_input)
|
@@ -256,7 +265,7 @@ class SingleImageDataset(Dataset):
|
|
256 |
|
257 |
image = self.all_images[index%len(self.all_images)]
|
258 |
alpha = self.all_alphas[index%len(self.all_images)]
|
259 |
-
filename = self.file_list[index%len(self.all_images)].replace(".png", "")
|
260 |
|
261 |
if self.cond_type != None:
|
262 |
conds = self.load_conds(self.cond_dirs[index%len(self.all_images)])
|
@@ -310,7 +319,7 @@ class SingleImageDataset(Dataset):
|
|
310 |
'camera_embeddings': camera_embeddings,
|
311 |
'normal_task_embeddings': normal_task_embeddings,
|
312 |
'color_task_embeddings': color_task_embeddings,
|
313 |
-
'filename': filename,
|
314 |
}
|
315 |
|
316 |
if conds is not None:
|
|
|
84 |
img_wh: Tuple[int, int],
|
85 |
bg_color: str,
|
86 |
crop_size: int = 224,
|
87 |
+
single_image: Optional[PIL.Image.Image] = None,
|
88 |
num_validation_samples: Optional[int] = None,
|
89 |
filepaths: Optional[list] = None,
|
90 |
cond_type: Optional[str] = None
|
|
|
93 |
If you pass in a root directory it will be searched for images
|
94 |
ending in ext (ext can be a list)
|
95 |
"""
|
96 |
+
# self.root_dir = Path(root_dir)
|
97 |
self.num_views = num_views
|
98 |
self.img_wh = img_wh
|
99 |
self.crop_size = crop_size
|
|
|
111 |
|
112 |
self.fix_cam_poses = self.load_fixed_poses() # world2cam matrix
|
113 |
|
114 |
+
# if filepaths is None:
|
115 |
+
# # Get a list of all files in the directory
|
116 |
+
# file_list = os.listdir(self.root_dir)
|
117 |
+
# else:
|
118 |
+
# file_list = filepaths
|
119 |
+
|
120 |
+
# if self.cond_type == None:
|
121 |
+
# # Filter the files that end with .png or .jpg
|
122 |
+
# self.file_list = [file for file in file_list if file.endswith(('.png', '.jpg'))]
|
123 |
+
# self.cond_dirs = None
|
124 |
+
# else:
|
125 |
+
# self.file_list = []
|
126 |
+
# self.cond_dirs = []
|
127 |
+
# for scene in file_list:
|
128 |
+
# self.file_list.append(os.path.join(scene, f"{scene}.png"))
|
129 |
+
# if self.cond_type == 'normals':
|
130 |
+
# self.cond_dirs.append(os.path.join(self.root_dir, scene, 'outs'))
|
131 |
+
# else:
|
132 |
+
# self.cond_dirs.append(os.path.join(self.root_dir, scene))
|
133 |
|
134 |
# load all images
|
135 |
self.all_images = []
|
136 |
self.all_alphas = []
|
137 |
bg_color = self.get_bg_color()
|
138 |
+
# for file in self.file_list:
|
139 |
+
# image, alpha = self.load_image(os.path.join(self.root_dir, file), bg_color, return_type='pt')
|
140 |
+
# self.all_images.append(image)
|
141 |
+
# self.all_alphas.append(alpha)
|
142 |
+
|
143 |
+
if single_image is not None:
|
144 |
+
image, alpha = self.load_image(None, bg_color, return_type='pt', Image=single_image)
|
145 |
self.all_images.append(image)
|
146 |
self.all_alphas.append(alpha)
|
147 |
|
|
|
202 |
return bg_color
|
203 |
|
204 |
|
205 |
+
def load_image(self, img_path, bg_color, return_type='np', Image=None):
|
206 |
# pil always returns uint8
|
207 |
+
if Image is None:
|
208 |
+
image_input = Image.open(img_path)
|
209 |
+
else:
|
210 |
+
image_input = Image
|
211 |
image_size = self.img_wh[0]
|
212 |
|
213 |
if self.crop_size!=-1:
|
|
|
219 |
h, w = ref_img_.height, ref_img_.width
|
220 |
scale = self.crop_size / max(h, w)
|
221 |
h_, w_ = int(scale * h), int(scale * w)
|
222 |
+
ref_img_ = ref_img_.resize((w_, h_))
|
223 |
image_input = add_margin(ref_img_, size=image_size)
|
224 |
else:
|
225 |
image_input = add_margin(image_input, size=max(image_input.height, image_input.width))
|
226 |
+
image_input = image_input.resize((image_size, image_size))
|
227 |
|
228 |
# img = scale_and_place_object(img, self.scale_ratio)
|
229 |
img = np.array(image_input)
|
|
|
265 |
|
266 |
image = self.all_images[index%len(self.all_images)]
|
267 |
alpha = self.all_alphas[index%len(self.all_images)]
|
268 |
+
# filename = self.file_list[index%len(self.all_images)].replace(".png", "")
|
269 |
|
270 |
if self.cond_type != None:
|
271 |
conds = self.load_conds(self.cond_dirs[index%len(self.all_images)])
|
|
|
319 |
'camera_embeddings': camera_embeddings,
|
320 |
'normal_task_embeddings': normal_task_embeddings,
|
321 |
'color_task_embeddings': color_task_embeddings,
|
322 |
+
# 'filename': filename,
|
323 |
}
|
324 |
|
325 |
if conds is not None:
|
mvdiffusion/models/__pycache__/transformer_mv2d.cpython-39.pyc
ADDED
Binary file (22.7 kB). View file
|
|
mvdiffusion/models/__pycache__/unet_mv2d_blocks.cpython-39.pyc
ADDED
Binary file (14.1 kB). View file
|
|
mvdiffusion/models/__pycache__/unet_mv2d_condition.cpython-39.pyc
ADDED
Binary file (44.5 kB). View file
|
|
mvdiffusion/pipelines/__pycache__/pipeline_mvdiffusion_image.cpython-39.pyc
ADDED
Binary file (17.6 kB). View file
|
|
mvdiffusion/pipelines/pipeline_mvdiffusion_image.py
CHANGED
@@ -155,7 +155,7 @@ class MVDiffusionImagePipeline(DiffusionPipeline):
|
|
155 |
# to avoid doing two forward passes
|
156 |
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])
|
157 |
|
158 |
-
image_pt = torch.stack([TF.to_tensor(img) for img in image_pil], dim=0).to(device)
|
159 |
image_pt = image_pt * 2.0 - 1.0
|
160 |
image_latents = self.vae.encode(image_pt).latent_dist.mode() * self.vae.config.scaling_factor
|
161 |
# Note: repeat differently from official pipelines
|
|
|
155 |
# to avoid doing two forward passes
|
156 |
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])
|
157 |
|
158 |
+
image_pt = torch.stack([TF.to_tensor(img) for img in image_pil], dim=0).to(device).to(dtype)
|
159 |
image_pt = image_pt * 2.0 - 1.0
|
160 |
image_latents = self.vae.encode(image_pt).latent_dist.mode() * self.vae.config.scaling_factor
|
161 |
# Note: repeat differently from official pipelines
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
--extra-index-url https://download.pytorch.org/whl/
|
2 |
torch==1.13.1
|
3 |
torchvision
|
4 |
diffusers[torch]==0.19.3
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu117
|
2 |
torch==1.13.1
|
3 |
torchvision
|
4 |
diffusers[torch]==0.19.3
|
utils/__pycache__/misc.cpython-39.pyc
ADDED
Binary file (1.62 kB). View file
|
|
utils/misc.py
CHANGED
@@ -4,13 +4,13 @@ from packaging import version
|
|
4 |
|
5 |
|
6 |
# ============ Register OmegaConf Recolvers ============= #
|
7 |
-
OmegaConf.register_new_resolver('calc_exp_lr_decay_rate', lambda factor, n: factor**(1./n))
|
8 |
-
OmegaConf.register_new_resolver('add', lambda a, b: a + b)
|
9 |
-
OmegaConf.register_new_resolver('sub', lambda a, b: a - b)
|
10 |
-
OmegaConf.register_new_resolver('mul', lambda a, b: a * b)
|
11 |
-
OmegaConf.register_new_resolver('div', lambda a, b: a / b)
|
12 |
-
OmegaConf.register_new_resolver('idiv', lambda a, b: a // b)
|
13 |
-
OmegaConf.register_new_resolver('basename', lambda p: os.path.basename(p))
|
14 |
# ======================================================= #
|
15 |
|
16 |
|
|
|
4 |
|
5 |
|
6 |
# ============ Register OmegaConf Recolvers ============= #
|
7 |
+
# OmegaConf.register_new_resolver('calc_exp_lr_decay_rate', lambda factor, n: factor**(1./n))
|
8 |
+
# OmegaConf.register_new_resolver('add', lambda a, b: a + b)
|
9 |
+
# OmegaConf.register_new_resolver('sub', lambda a, b: a - b)
|
10 |
+
# OmegaConf.register_new_resolver('mul', lambda a, b: a * b)
|
11 |
+
# OmegaConf.register_new_resolver('div', lambda a, b: a / b)
|
12 |
+
# OmegaConf.register_new_resolver('idiv', lambda a, b: a // b)
|
13 |
+
# OmegaConf.register_new_resolver('basename', lambda p: os.path.basename(p))
|
14 |
# ======================================================= #
|
15 |
|
16 |
|