Spaces:
Runtime error
Runtime error
File size: 7,504 Bytes
800ade2 f9e72d0 2773f58 f9e72d0 2773f58 800ade2 f9e72d0 ae2c89d f67adcd ac0b0ba f67adcd 8fc7477 f9e72d0 8fc7477 000d979 8fc7477 000d979 ac0b0ba f67adcd 2773f58 26b9e85 e9f0c2c ae2c89d 62dad9a 4a35755 6dc09e2 f67adcd 6dc09e2 7eb1431 6dc09e2 ae2c89d dd21f5c 6663c9a ae2c89d 6dc09e2 c619767 ae2c89d 925ce8d 2773f58 c619767 0542a87 b6eaec4 ae2c89d 6d7cc85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import os
import torch
import requests
import gradio as gr
import transformers
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
from peft import PeftModel
## CoT prompts
def _add_markup(table):
parts = [p.strip() for p in table.splitlines(keepends=False)]
if parts[0].startswith('TITLE'):
result = f"Title: {parts[0].split(' | ')[1].strip()}\n"
rows = parts[1:]
else:
result = ''
rows = parts
prefixes = ['Header: '] + [f'Row {i+1}: ' for i in range(len(rows) - 1)]
return result + '\n'.join(prefix + row for prefix, row in zip(prefixes, rows))
_TABLE = """Year | Democrats | Republicans | Independents
2004 | 68.1% | 45.0% | 53.0%
2006 | 58.0% | 42.0% | 53.0%
2007 | 59.0% | 38.0% | 45.0%
2009 | 72.0% | 49.0% | 60.0%
2011 | 71.0% | 51.2% | 58.0%
2012 | 70.0% | 48.0% | 53.0%
2013 | 72.0% | 41.0% | 60.0%"""
_INSTRUCTION = 'Read the table below to answer the following questions.'
_TEMPLATE = f"""First read an example then the complete question for the second table.
------------
{_INSTRUCTION}
{_add_markup(_TABLE)}
Q: In which year republicans have the lowest favor rate?
A: Let's find the column of republicans. Then let's extract the favor rates, they [45.0, 42.0, 38.0, 49.0, 51.2, 48.0, 41.0]. The smallest number is 38.0, that's Row 3. Row 3 is year 2007. The answer is 2007.
Q: What is the sum of Democrats' favor rates of 2004, 2012, and 2013?
A: Let's find the rows of years 2004, 2012, and 2013. We find Row 1, 6, 7. The favor dates of Demoncrats on that 3 rows are 68.1, 70.0, and 72.0. 68.1+70.0+72=210.1. The answer is 210.1.
Q: By how many points do Independents surpass Republicans in the year of 2011?
A: Let's find the row with year = 2011. We find Row 5. We extract Independents and Republicans' numbers. They are 58.0 and 51.2. 58.0-51.2=6.8. The answer is 6.8.
Q: Which group has the overall worst performance?
A: Let's sample a couple of years. In Row 1, year 2004, we find Republicans having the lowest favor rate 45.0 (since 45.0<68.1, 45.0<53.0). In year 2006, Row 2, we find Republicans having the lowest favor rate 42.0 (42.0<58.0, 42.0<53.0). The trend continues to other years. The answer is Republicans.
Q: Which party has the second highest favor rates in 2007?
A: Let's find the row of year 2007, that's Row 3. Let's extract the numbers on Row 3: [59.0, 38.0, 45.0]. 45.0 is the second highest. 45.0 is the number of Independents. The answer is Independents.
{_INSTRUCTION}"""
## alpaca-lora
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
BASE_MODEL = "decapoda-research/llama-7b-hf"
LORA_WEIGHTS = "tloen/alpaca-lora-7b"
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=False,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
if device != "cpu":
model.half()
model.eval()
if torch.__version__ >= "2":
model = torch.compile(model)
def evaluate(
table,
question,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
**kwargs,
):
prompt = _TEMPLATE + "\n" + _add_markup(table) + "\n" + "Q: " + question + "\n" + "A:"
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
#return output.split("A:")[-1].strip()
return output
## deplot models
model_deplot = Pix2StructForConditionalGeneration.from_pretrained("google/deplot", torch_dtype=torch.bfloat16).to(0)
processor_deplot = Pix2StructProcessor.from_pretrained("google/deplot")
def process_document(image, question):
# image = Image.open(image)
inputs = processor_deplot(images=image, text="Generate the underlying data table for the figure below:", return_tensors="pt").to(0, torch.bfloat16)
predictions = model_deplot.generate(**inputs, max_new_tokens=512)
table = processor_deplot.decode(predictions[0], skip_special_tokens=True).replace("<0x0A>", "\n")
# send prompt+table to LLM
res = evaluate(table, question)
#return res + "\n\n" + res.split("A:")[-1]
return [table, res.split("A:")[-1]]
description = "Demo for DePlot+LLM for QA and summarisation. [DePlot](https://arxiv.org/abs/2212.10505) is an image-to-text model that converts plots and charts into a textual sequence. The sequence then is used to prompt LLM for chain-of-thought reasoning. The current underlying LLM is [alpaca-lora](https://huggingface.co/spaces/tloen/alpaca-lora). To use it, simply upload your image and type a question or instruction and click 'submit', or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2212.10505' target='_blank'>DePlot: One-shot visual language reasoning by plot-to-table translation</a></p>"
demo = gr.Interface(
fn=process_document,
inputs=["image", "text"],
outputs=[
gr.inputs.Textbox(
lines=8,
label="Intermediate Table",
),
gr.inputs.Textbox(
lines=5,
label="Output",
)
],
title="DePlot+LLM (Multimodal chain-of-thought reasoning on plots)",
description=description,
article=article,
enable_queue=True,
examples=[["deplot_case_study_m1.png", "What is the sum of numbers of Indonesia and Ireland? Remember to think step by step."],
["deplot_case_study_m1.png", "Summarise the chart for me please."],
["deplot_case_study_3.png", "By how much did China's growth rate drop? Think step by step."],
["deplot_case_study_4.png", "How many papers are submitted in 2020?"],
["deplot_case_study_x2.png", "Summarise the chart for me please."]],
cache_examples=True)
demo.launch(debug=True) |