File size: 4,080 Bytes
51c2dc1
f250ee0
 
51c2dc1
 
 
 
 
 
 
 
695f2ee
f250ee0
 
a8a4d72
f250ee0
695f2ee
f250ee0
 
51c2dc1
 
a3ca6a3
51c2dc1
 
 
f250ee0
 
a8a4d72
a3ca6a3
f250ee0
 
 
 
51c2dc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
import numpy as np
from PIL import Image
from share_btn import community_icon_html, loading_icon_html, share_js
import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video

pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.to("cuda")
pipe_xl = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_XL", torch_dtype=torch.float16, revision="refs/pr/17")
pipe_xl.vae.enable_slicing()
pipe_xl.scheduler = DPMSolverMultistepScheduler.from_config(pipe_xl.scheduler.config)
pipe_xl.enable_model_cpu_offload()
pipe_xl.to("cpu")


def infer(prompt):
    #prompt = "Darth Vader is surfing on waves"
    #pipe.to("cuda")
    video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames
    video_path = export_to_video(video_frames)
    print(video_path)

    video = [Image.fromarray(frame).resize((1024, 576)) for frame in video_frames]
    #del pipe
    #pipe_xl.to("cuda")
    video_frames = pipe_xl(prompt, video=video, strength=0.6).frames
    video_path = export_to_video(video_frames, output_video_path="xl_result.mp4")
    
    return "xl_result.mp4", gr.Group.update(visible=True)

css = """
#col-container {max-width: 510px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
  animation: spin 1s linear infinite;
}

@keyframes spin {
  from {
      transform: rotate(0deg);
  }
  to {
      transform: rotate(360deg);
  }
}

#share-btn-container {
  display: flex; 
  padding-left: 0.5rem !important; 
  padding-right: 0.5rem !important; 
  background-color: #000000; 
  justify-content: center; 
  align-items: center; 
  border-radius: 9999px !important; 
  max-width: 13rem;
}

#share-btn-container:hover {
  background-color: #060606;
}

#share-btn {
  all: initial; 
  color: #ffffff;
  font-weight: 600; 
  cursor:pointer; 
  font-family: 'IBM Plex Sans', sans-serif; 
  margin-left: 0.5rem !important; 
  padding-top: 0.5rem !important; 
  padding-bottom: 0.5rem !important;
  right:0;
}

#share-btn * {
  all: unset;
}

#share-btn-container div:nth-child(-n+2){
  width: auto !important;
  min-height: 0px !important;
}

#share-btn-container .wrap {
  display: none !important;
}

#share-btn-container.hidden {
  display: none!important;
}
img[src*='#center'] { 
    display: block;
    margin: auto;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            """
            <h1 style="text-align: center;">Zeroscope Text-to-Video</h1>
            <p style="text-align: center;">
            A watermark-free Modelscope-based video model optimized for producing high-quality 16:9 compositions and a smooth video output. <br />
            </p>
            
            [![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg#center)](https://huggingface.co/spaces/fffiloni/zeroscope?duplicate=true)
            
            """
        )

        prompt_in = gr.Textbox(label="Prompt", placeholder="Darth Vader is surfing on waves", elem_id="prompt-in")
        #inference_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=1, value=40, interactive=False)
        submit_btn = gr.Button("Submit")
        video_result = gr.Video(label="Video Output", elem_id="video-output")

        with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
            community_icon = gr.HTML(community_icon_html)
            loading_icon = gr.HTML(loading_icon_html)
            share_button = gr.Button("Share to community", elem_id="share-btn")

    submit_btn.click(fn=infer,
                    inputs=[prompt_in],
                    outputs=[video_result, share_group])
    
    share_button.click(None, [], [], _js=share_js)

demo.queue(max_size=12).launch()