File size: 8,594 Bytes
3bbe5bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import pickle
from distutils import log

import torch
import torch.nn.functional as F
import torch.distributed as dist

from einops import rearrange, repeat
from timm.loss import SoftTargetCrossEntropy

soft_cross_entropy = SoftTargetCrossEntropy()

def is_dist_initialized():
    return torch.distributed.is_initialized()

def get_world_size():
    if is_dist_initialized():
        return torch.distributed.get_world_size()
    return 1

def get_rank():
    if is_dist_initialized():
        return dist.get_rank()
    return 0

def all_gather_grad(x):
    if get_world_size() > 1:
        all_x = [torch.zeros_like(x) for _ in range(get_world_size())]
        torch.distributed.all_gather(all_x, x)
        all_x[torch.distributed.get_rank()] = x
        x = torch.cat(all_x, dim=0)
    return x

def vl_multilabel_contrastive_loss(image_feat, text_feat, temperature=1):
    """
    Args:
        image_feat (torch.Tensor): shape [B, L1, C] # B: batch_size, L1: 1, C: 256
        text_feat (torch.Tensor): shape [B, L2, C] # B:batch_size, L2: number of selected nouns, C: 256

    Returns:
    """
    # [B, L1, C], L1 = 1
    # image_feat = F.normalize(image_feat, dim=-1)
    # [B, L2, C]
    # text_feat = F.normalize(text_feat, dim=-1)
    # HACK: normalize outside
    
    # [B, L1, L2]
    dist_per_img = image_feat @ rearrange(text_feat, 'b l c -> b c l')    
    # [B, L2, L1]
    dist_per_text = text_feat @ rearrange(image_feat, 'b l c -> b c l')

    batch = image_feat.shape[0]
    img_len = image_feat.shape[1]
    text_len = text_feat.shape[1]
    # [B, L1, L2]
    pos_labels_batch_img = rearrange(torch.ones_like(dist_per_text) / dist_per_text.size(1), 'b l2 l1 -> b l1 l2')
    # [B, L2, L1]
    pos_labels_batch_text = rearrange(torch.ones_like(dist_per_img) / dist_per_img.size(1), 'b l1 l2 -> b l2 l1')

    image_x = rearrange(image_feat, 'b l c -> (b l) c')
    text_x = rearrange(text_feat, 'b l c -> (b l) c')

    logits_per_img = image_x @ all_gather_grad(text_x).t()
    logits_per_text = text_x @ all_gather_grad(image_x).t()

    # get label globally
    # [B, L1, B, L2, W]
    labels_per_img = F.one_hot(
        torch.ones(batch, img_len, batch, text_len, dtype=torch.long, device=image_x.device) * get_rank(),
        num_classes=get_world_size()).to(image_x.dtype)
    labels_per_img *= rearrange(pos_labels_batch_img, 'b l1 l2 -> b l1 1 l2 1') * repeat(
        torch.eye(batch, dtype=image_x.dtype, device=image_x.device), 'b1 b2 -> b1 1 b2 1 1')
    # [BxL1, WxBxL2]
    labels_per_img = rearrange(labels_per_img, 'b1 l1 b2 l2 w -> (b1 l1) (w b2 l2)')
    # [B, L2, B, L1, W]
    labels_per_text = F.one_hot(
        torch.ones(batch, text_len, batch, img_len, dtype=torch.long, device=text_x.device) * get_rank(),
        num_classes=get_world_size()).to(text_x.dtype)
    labels_per_text *= rearrange(pos_labels_batch_text, 'b l2 l1 -> b l2 1 l1 1') * repeat(
        torch.eye(batch, dtype=text_x.dtype, device=image_x.device), 'b2 b1 -> b2 1 b1 1 1')
    # [BxL2, WxBxL1]
    labels_per_text = rearrange(labels_per_text, 'b2 l2 b1 l1 w -> (b2 l2) (w b1 l1)')

    logit_scale = temperature.exp().clamp(max=100)

    loss_img = soft_cross_entropy(logit_scale * logits_per_img, labels_per_img)
    loss_text = soft_cross_entropy(logit_scale * logits_per_text, labels_per_text)

    loss = 0.5 * (loss_img + loss_text)
    return loss

def vl_contrastive_loss(image_feat, text_feat, temperature=1):
    # if image_id or text_id is None, it should be None across all GPUs
    # image_feat = F.normalize(image_feat, dim=1)
    # text_feat = F.normalize(text_feat, dim=1)
    # handle normalization outside

    # add the following 4 lines
    image_feat = all_gather_grad(image_feat)
    text_feat = all_gather_grad(text_feat)
    
    logits = torch.matmul(image_feat, text_feat.t())
    logit_scale = temperature.exp().clamp(max=100)

    gt = torch.arange(logits.shape[0], device=logits.device)
    loss1 = F.cross_entropy(logit_scale * logits, gt)
    loss2 = F.cross_entropy(logit_scale * logits.t(), gt)
    return (loss1 + loss2) / 2 # scale it up by the number of GPUs


def all_gather_pickle(data, device):
    """
    Run all_gather on arbitrary picklable data (not necessarily tensors)
    Args:
        data: any picklable object
    Returns:
        list[data]: list of data gathered from each rank
    """
    world_size = get_world_size()
    if world_size == 1:
        return [data]

    # serialized to a Tensor
    buffer = pickle.dumps(data)
    storage = torch.ByteStorage.from_buffer(buffer)
    tensor = torch.ByteTensor(storage).to(device)

    # obtain Tensor size of each rank
    local_size = torch.LongTensor([tensor.numel()]).cuda()
    size_list = [torch.LongTensor([0]).cuda() for _ in range(world_size)]
    dist.all_gather(size_list, local_size)
    size_list = [int(size.item()) for size in size_list]
    max_size = max(size_list)

    # receiving Tensor from all ranks
    # we pad the tensor because torch all_gather does not support
    # gathering tensors of different shapes
    tensor_list = []
    for _ in size_list:
        tensor_list.append(torch.ByteTensor(size=(max_size,)).cuda())
    if local_size != max_size:
        padding = torch.ByteTensor(size=(max_size - local_size,)).cuda()
        tensor = torch.cat((tensor, padding), dim=0)
    dist.all_gather(tensor_list, tensor)

    data_list = []
    for size, tensor in zip(size_list, tensor_list):
        buffer = tensor.cpu().numpy().tobytes()[:size]
        data_list.append(pickle.loads(buffer))

    return data_list

def all_gather_arbitary_tensor(tensor):
    if get_world_size() > 1:
        device = tensor.device
        tensor_batch = all_gather_pickle(tensor.cpu(), device)
        tensor_batch = [x.to(device) for x in tensor_batch]
        tensor_batch[torch.distributed.get_rank()] = tensor
        tensor_batch = torch.cat(tensor_batch, dim=0)
    else:
        tensor_batch = tensor
    return tensor_batch

def ql_contrastive_loss(image_feat, text_feat, temperature=1):
    # add the following 4 lines
    image_feat = all_gather_arbitary_tensor(image_feat)
    text_feat = all_gather_arbitary_tensor(text_feat)

    logits = torch.matmul(image_feat, text_feat.t())
    logit_scale = temperature.exp().clamp(max=100)

    gt = torch.arange(logits.shape[0], device=logits.device)
    loss1 = F.cross_entropy(logit_scale * logits, gt)
    loss2 = F.cross_entropy(logit_scale * logits.t(), gt)
    return (loss1 + loss2) / 2 # scale it up by the number of GPUs

def vl_similarity(image_feat, text_feat, temperature=1):
    # Only support single GPU for now.
    logits = torch.matmul(image_feat, text_feat.t())
    logits = temperature.exp().clamp(max=100) * logits
    return logits

def ql_multi_contrastive_loss(image_feat, text_feat, text_hash, temperature=1):
    # add the following 4 lines
    image_feat = all_gather_arbitary_tensor(image_feat)
    text_feat = all_gather_arbitary_tensor(text_feat)

    text_hash_batch = all_gather_pickle(text_hash, text_feat.device)
    text_hash_all = torch.cat(text_hash_batch)
    
    text_hash_all_unique = torch.unique(text_hash_all).tolist()
    gt = torch.zeros((image_feat.shape[0], len(text_hash_all_unique)), device=text_feat.device)
    text_hash_all = text_hash_all.tolist()
    text_feat_unique = torch.stack([text_feat[text_hash_all.index(txt)] for txt in text_hash_all_unique])

    for idx, txt in enumerate(text_hash_all):
        gt[idx][text_hash_all_unique.index(txt)] = 1
    
    logits = torch.matmul(image_feat, text_feat_unique.t())
    logits = logits*temperature.exp().clamp(max=100)
    
    loss_img = soft_cross_entropy(logits, gt)
    loss_text = soft_cross_entropy(logits.t(), gt.t() / gt.t().sum(-1, keepdim=True))

    loss = 0.7 * loss_img + 0.3 * loss_text
    return loss

def image_text_contrastive_loss_queue(image_feat_inp, text_feat_inp, lang_enc, training):
    # add the following 4 lines
    image_feat = all_gather_grad(image_feat_inp.contiguous())
    text_feat = all_gather_grad(text_feat_inp.contiguous())

    image_feat = image_feat / (image_feat.norm(dim=-1, keepdim=True) + 1e-7)
    text_feat = text_feat / (text_feat.norm(dim=-1, keepdim=True) + 1e-7)

    temperature = lang_enc.logit_scale
    logits = torch.matmul(image_feat, text_feat.t())
    logit_scale = temperature.exp().clamp(max=100)

    gt = torch.arange(logits.shape[0], device=logits.device)
    loss1 = F.cross_entropy(logit_scale * logits, gt)
    loss2 = F.cross_entropy(logit_scale * logits.t(), gt)

    return (loss1 + loss2) / 2 # scale it up by the number of GPUs