Spaces:
Paused
Paused
File size: 8,594 Bytes
3bbe5bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import pickle
from distutils import log
import torch
import torch.nn.functional as F
import torch.distributed as dist
from einops import rearrange, repeat
from timm.loss import SoftTargetCrossEntropy
soft_cross_entropy = SoftTargetCrossEntropy()
def is_dist_initialized():
return torch.distributed.is_initialized()
def get_world_size():
if is_dist_initialized():
return torch.distributed.get_world_size()
return 1
def get_rank():
if is_dist_initialized():
return dist.get_rank()
return 0
def all_gather_grad(x):
if get_world_size() > 1:
all_x = [torch.zeros_like(x) for _ in range(get_world_size())]
torch.distributed.all_gather(all_x, x)
all_x[torch.distributed.get_rank()] = x
x = torch.cat(all_x, dim=0)
return x
def vl_multilabel_contrastive_loss(image_feat, text_feat, temperature=1):
"""
Args:
image_feat (torch.Tensor): shape [B, L1, C] # B: batch_size, L1: 1, C: 256
text_feat (torch.Tensor): shape [B, L2, C] # B:batch_size, L2: number of selected nouns, C: 256
Returns:
"""
# [B, L1, C], L1 = 1
# image_feat = F.normalize(image_feat, dim=-1)
# [B, L2, C]
# text_feat = F.normalize(text_feat, dim=-1)
# HACK: normalize outside
# [B, L1, L2]
dist_per_img = image_feat @ rearrange(text_feat, 'b l c -> b c l')
# [B, L2, L1]
dist_per_text = text_feat @ rearrange(image_feat, 'b l c -> b c l')
batch = image_feat.shape[0]
img_len = image_feat.shape[1]
text_len = text_feat.shape[1]
# [B, L1, L2]
pos_labels_batch_img = rearrange(torch.ones_like(dist_per_text) / dist_per_text.size(1), 'b l2 l1 -> b l1 l2')
# [B, L2, L1]
pos_labels_batch_text = rearrange(torch.ones_like(dist_per_img) / dist_per_img.size(1), 'b l1 l2 -> b l2 l1')
image_x = rearrange(image_feat, 'b l c -> (b l) c')
text_x = rearrange(text_feat, 'b l c -> (b l) c')
logits_per_img = image_x @ all_gather_grad(text_x).t()
logits_per_text = text_x @ all_gather_grad(image_x).t()
# get label globally
# [B, L1, B, L2, W]
labels_per_img = F.one_hot(
torch.ones(batch, img_len, batch, text_len, dtype=torch.long, device=image_x.device) * get_rank(),
num_classes=get_world_size()).to(image_x.dtype)
labels_per_img *= rearrange(pos_labels_batch_img, 'b l1 l2 -> b l1 1 l2 1') * repeat(
torch.eye(batch, dtype=image_x.dtype, device=image_x.device), 'b1 b2 -> b1 1 b2 1 1')
# [BxL1, WxBxL2]
labels_per_img = rearrange(labels_per_img, 'b1 l1 b2 l2 w -> (b1 l1) (w b2 l2)')
# [B, L2, B, L1, W]
labels_per_text = F.one_hot(
torch.ones(batch, text_len, batch, img_len, dtype=torch.long, device=text_x.device) * get_rank(),
num_classes=get_world_size()).to(text_x.dtype)
labels_per_text *= rearrange(pos_labels_batch_text, 'b l2 l1 -> b l2 1 l1 1') * repeat(
torch.eye(batch, dtype=text_x.dtype, device=image_x.device), 'b2 b1 -> b2 1 b1 1 1')
# [BxL2, WxBxL1]
labels_per_text = rearrange(labels_per_text, 'b2 l2 b1 l1 w -> (b2 l2) (w b1 l1)')
logit_scale = temperature.exp().clamp(max=100)
loss_img = soft_cross_entropy(logit_scale * logits_per_img, labels_per_img)
loss_text = soft_cross_entropy(logit_scale * logits_per_text, labels_per_text)
loss = 0.5 * (loss_img + loss_text)
return loss
def vl_contrastive_loss(image_feat, text_feat, temperature=1):
# if image_id or text_id is None, it should be None across all GPUs
# image_feat = F.normalize(image_feat, dim=1)
# text_feat = F.normalize(text_feat, dim=1)
# handle normalization outside
# add the following 4 lines
image_feat = all_gather_grad(image_feat)
text_feat = all_gather_grad(text_feat)
logits = torch.matmul(image_feat, text_feat.t())
logit_scale = temperature.exp().clamp(max=100)
gt = torch.arange(logits.shape[0], device=logits.device)
loss1 = F.cross_entropy(logit_scale * logits, gt)
loss2 = F.cross_entropy(logit_scale * logits.t(), gt)
return (loss1 + loss2) / 2 # scale it up by the number of GPUs
def all_gather_pickle(data, device):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to(device)
# obtain Tensor size of each rank
local_size = torch.LongTensor([tensor.numel()]).cuda()
size_list = [torch.LongTensor([0]).cuda() for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.ByteTensor(size=(max_size,)).cuda())
if local_size != max_size:
padding = torch.ByteTensor(size=(max_size - local_size,)).cuda()
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def all_gather_arbitary_tensor(tensor):
if get_world_size() > 1:
device = tensor.device
tensor_batch = all_gather_pickle(tensor.cpu(), device)
tensor_batch = [x.to(device) for x in tensor_batch]
tensor_batch[torch.distributed.get_rank()] = tensor
tensor_batch = torch.cat(tensor_batch, dim=0)
else:
tensor_batch = tensor
return tensor_batch
def ql_contrastive_loss(image_feat, text_feat, temperature=1):
# add the following 4 lines
image_feat = all_gather_arbitary_tensor(image_feat)
text_feat = all_gather_arbitary_tensor(text_feat)
logits = torch.matmul(image_feat, text_feat.t())
logit_scale = temperature.exp().clamp(max=100)
gt = torch.arange(logits.shape[0], device=logits.device)
loss1 = F.cross_entropy(logit_scale * logits, gt)
loss2 = F.cross_entropy(logit_scale * logits.t(), gt)
return (loss1 + loss2) / 2 # scale it up by the number of GPUs
def vl_similarity(image_feat, text_feat, temperature=1):
# Only support single GPU for now.
logits = torch.matmul(image_feat, text_feat.t())
logits = temperature.exp().clamp(max=100) * logits
return logits
def ql_multi_contrastive_loss(image_feat, text_feat, text_hash, temperature=1):
# add the following 4 lines
image_feat = all_gather_arbitary_tensor(image_feat)
text_feat = all_gather_arbitary_tensor(text_feat)
text_hash_batch = all_gather_pickle(text_hash, text_feat.device)
text_hash_all = torch.cat(text_hash_batch)
text_hash_all_unique = torch.unique(text_hash_all).tolist()
gt = torch.zeros((image_feat.shape[0], len(text_hash_all_unique)), device=text_feat.device)
text_hash_all = text_hash_all.tolist()
text_feat_unique = torch.stack([text_feat[text_hash_all.index(txt)] for txt in text_hash_all_unique])
for idx, txt in enumerate(text_hash_all):
gt[idx][text_hash_all_unique.index(txt)] = 1
logits = torch.matmul(image_feat, text_feat_unique.t())
logits = logits*temperature.exp().clamp(max=100)
loss_img = soft_cross_entropy(logits, gt)
loss_text = soft_cross_entropy(logits.t(), gt.t() / gt.t().sum(-1, keepdim=True))
loss = 0.7 * loss_img + 0.3 * loss_text
return loss
def image_text_contrastive_loss_queue(image_feat_inp, text_feat_inp, lang_enc, training):
# add the following 4 lines
image_feat = all_gather_grad(image_feat_inp.contiguous())
text_feat = all_gather_grad(text_feat_inp.contiguous())
image_feat = image_feat / (image_feat.norm(dim=-1, keepdim=True) + 1e-7)
text_feat = text_feat / (text_feat.norm(dim=-1, keepdim=True) + 1e-7)
temperature = lang_enc.logit_scale
logits = torch.matmul(image_feat, text_feat.t())
logit_scale = temperature.exp().clamp(max=100)
gt = torch.arange(logits.shape[0], device=logits.device)
loss1 = F.cross_entropy(logit_scale * logits, gt)
loss2 = F.cross_entropy(logit_scale * logits.t(), gt)
return (loss1 + loss2) / 2 # scale it up by the number of GPUs |