Spaces:
Sleeping
Sleeping
File size: 2,749 Bytes
671a439 bb86689 d53a06b 671a439 d53a06b 671a439 ea31508 671a439 ea31508 d53a06b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
title: Video-to-Audio Ldm
emoji: 🎧
colorFrom: green
colorTo: purple
sdk: gradio
sdk_version: 4.39.0
app_file: app.py
pinned: false
short_description: Video-to-Audio Generation with Hidden Alignment
---
# Video-to-Audio Generation with Hidden Alignment
Manjie Xu, Chenxing Li, Yong Ren, Rilin Chen, Yu Gu, Wei Liang, Dong Yu
Tencent AI Lab
<a href='https://arxiv.org/abs/2407.07464'>
<img src='https://img.shields.io/badge/Paper-Arxiv-green?style=plastic&logo=arXiv&logoColor=green' alt='Paper Arxiv'>
</a>
<a href='https://sites.google.com/view/vta-ldm/home'>
<img src='https://img.shields.io/badge/Project-Page-blue?style=plastic&logo=Google%20chrome&logoColor=blue' alt='Project Page'>
</a>
Generating semantically and temporally aligned audio content in accordance with video input has become a focal point for researchers, particularly following the remarkable breakthrough in text-to-video generation. We aim to offer insights into the video-to-audio generation paradigm.
## Install
First install the python requirements. We recommend using conda:
```
conda create -n vta-ldm python=3.10
conda activate vta-ldm
pip install -r requirements.txt
```
Then download the checkpoints from [huggingface](https://huggingface.co/ariesssxu/vta-ldm-clip4clip-v-large), we recommend using git lfs:
```
mkdir ckpt && cd ckpt
git clone https://huggingface.co/ariesssxu/vta-ldm-clip4clip-v-large
# pull if large files are skipped:
cd vta-ldm-clip4clip-v-large && git lfs pull
```
## Model List
- ✅ VTA_LDM (the base model)
- 🕳️ VTA_LDM+IB/LB/CAVP/VIVIT
- 🕳️ VTA_LDM+text
- 🕳️ VTA_LDM+PE
- 🕳️ VTA_LDM+text+concat
- 🕳️ VTA_LDM+pretrain+text+concat
## Inference
Put the video pieces into the `data` directory. Run the provided inference script to generate audio content from the input videos:
```
bash inference_from_video.sh
```
You can custom the hyperparameters to fit your personal requirements. We also provide a script that can help merge the generated audio content with the original video based on ffmpeg:
```
bash tools/merge_video_audio
```
## Training
TBD. Code Coming Soon.
## Ack
This work is based on some of the great repos:
[diffusers](https://github.com/huggingface/diffusers)
[Tango](https://github.com/declare-lab/tango)
[Audioldm](https://github.com/haoheliu/AudioLDM)
## Cite us
```
@misc{xu2024vta-ldm,
title={Video-to-Audio Generation with Hidden Alignment},
author={Manjie Xu and Chenxing Li and Yong Ren and Rilin Chen and Yu Gu and Wei Liang and Dong Yu},
year={2024},
eprint={2407.07464},
archivePrefix={arXiv},
url={https://arxiv.org/abs/2407.07464},
}
```
## Disclaimer
This is not an official product by Tencent Ltd. |