File size: 8,759 Bytes
2ada650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import logging
import json
import os
import torch
import torch.distributed as dist
from itertools import chain

import minigpt4.common.dist_utils as dist_utils
from minigpt4.common.dist_utils import get_rank, get_world_size, is_main_process
from minigpt4.common.registry import registry
from minigpt4.common.vqa_tools.vqa_eval import VQAEval as VQATool
from minigpt4.tasks.vqa import VQATask


@registry.register_task("vqa_reading_comprehension")
class VQARCTask(VQATask):
    def __init__(
        self,
        num_beams,
        max_len,
        min_len,
        evaluate,
        num_ans_candidates,
        inference_method="rank",
        **kwargs,
    ):
        super().__init__(num_beams, max_len, min_len, evaluate, num_ans_candidates, inference_method)

        self.config = kwargs.get('config')

    @classmethod
    def setup_task(cls, cfg):
        run_cfg = cfg.run_cfg

        num_beams = run_cfg.get("num_beams", 3)
        max_len = run_cfg.get("max_len", 10)
        min_len = run_cfg.get("min_len", 1)

        evaluate = run_cfg.get("evaluate", False)

        inference_method = run_cfg.get("inference_method", "rank")
        num_ans_candidates = run_cfg.get("num_ans_candidates", 128)

        return cls(
            num_beams=num_beams,
            max_len=max_len,
            min_len=min_len,
            evaluate=evaluate,
            num_ans_candidates=num_ans_candidates,
            inference_method=inference_method,
            config=run_cfg,
        )

    def valid_step(self, model, samples):
        answers, captions, gradcams = model.predict_answers(
            samples=samples,
            inference_method=self.inference_method,
            num_beams=self.num_beams,
            max_len=self.max_len,
            min_len=self.min_len,
            internal_bsz_fid=self.config['internal_bsz_fid'],
            num_captions=self.config['num_captions'],
            num_captions_fid=self.config['num_captions_fid'],
            cap_max_length=self.config['cap_max_length'],
            cap_min_length=self.config['cap_min_length'],
            top_k=self.config['top_k'],
            top_p=self.config['top_p'],
            repetition_penalty=self.config['repetition_penalty'],
            num_patches=self.config['num_patches'],
            block_num=self.config['block_num'],
        )

        pred_qa_pairs = []
        sample_captions = []
        sample_gradcams = []

        question_id = samples["question_id"]
        for answer, caption, gradcam, ques_id in zip(answers, captions, gradcams, question_id):
            ques_id = int(ques_id.item())
            pred_qa_pairs.append({"question_id": ques_id, "answer": answer})
            sample_captions.append({"question_id": ques_id, "caption": caption})
            sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam})

        return [sample_gradcams, sample_captions, pred_qa_pairs]

    def after_evaluation(self, val_result, split_name, **kwargs):
        result_ = list(chain(*val_result[0::3]))
        result_file = self.save_gradcam(
            result_,
            result_dir=registry.get_path("result_dir"),
            filename=f"{split_name}_gradcam_result",
            remove_duplicate="question_id",
        )

        result_ = list(chain(*val_result[1::3]))
        result_file = self.save_result(
            result_,
            result_dir=registry.get_path("result_dir"),
            filename=f"{split_name}_caption_result",
            remove_duplicate="question_id",
        )

        result_ = list(chain(*val_result[2::3]))
        result_file = self.save_result(
            result_,
            result_dir=registry.get_path("result_dir"),
            filename=f"{split_name}_vqa_result",
            remove_duplicate="question_id",
        )

        metrics = self._report_metrics(result_file=result_file, split=split_name)

        return metrics

    def save_gradcam(self, result, result_dir, filename, remove_duplicate=""):
        result_file = os.path.join(result_dir, '%s_rank%d.pth' % (filename, get_rank()))
        final_result_file = os.path.join(result_dir, '%s.pth' % filename)
        torch.save({'result': result}, result_file)

        dist.barrier()

        if is_main_process():
            logging.warning("rank %d starts merging results." % get_rank())
            # combine results from all processes
            result = []

            for rank in range(get_world_size()):
                result_file = os.path.join(result_dir, '%s_rank%d.pth' % (filename, rank))
                res_ckpt = torch.load(result_file, map_location='cpu')
                res = res_ckpt['result']

                result += res

            if remove_duplicate:
                result_new = []
                id_list = []
                for res in result:
                    if res[remove_duplicate] not in id_list:
                        id_list.append(res[remove_duplicate])
                        result_new.append(res)
                result = result_new

            torch.save({'result': result}, final_result_file)
            print("result file saved to %s" % final_result_file)

        return final_result_file


@registry.register_task("gqa_reading_comprehension")
class GQARCTask(VQARCTask):
    def valid_step(self, model, samples):
        answers, captions, gradcams = model.predict_answers(
            samples=samples,
            inference_method=self.inference_method,
            num_beams=self.num_beams,
            max_len=self.max_len,
            min_len=self.min_len,
            internal_bsz_fid=self.config['internal_bsz_fid'],
            num_captions=self.config['num_captions'],
            num_captions_fid=self.config['num_captions_fid'],
            cap_max_length=self.config['cap_max_length'],
            cap_min_length=self.config['cap_min_length'],
            top_k=self.config['top_k'],
            top_p=self.config['top_p'],
            repetition_penalty=self.config['repetition_penalty'],
            num_patches=self.config['num_patches'],
            block_num=self.config['block_num'],
        )

        pred_qa_pairs = []
        sample_captions = []
        sample_gradcams = []

        question_id = samples["question_id"]
        gt_answers = samples["answer"]

        for pred_answer, caption, gradcam, ques_id, gt_answer in zip(answers, captions, gradcams, question_id, gt_answers):
            ques_id = int(ques_id.item())
            pred_qa_pairs.append({"question_id": ques_id, "pred_ans": pred_answer, "gt_ans": gt_answer})
            sample_captions.append({"question_id": ques_id, "caption": caption})
            sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam})

        return [sample_gradcams, sample_captions, pred_qa_pairs]

    @dist_utils.main_process
    def _report_metrics(self, result_file, split):
        """
        TODO: add other evaluation metrics for GQA
        """

        results = json.load(open(result_file, "r"))
        acc = []
        vqa_tool = VQATool()

        for res in results:
            if res["gt_ans"] is None:
                # prepare test results for leaderboard evaluation
                self._save_result_leaderboard(results)
                return

            gt_ans = res["gt_ans"]
            pred = res["pred_ans"]

            if self.inference_method == "generate":
                pred = vqa_tool.processPunctuation(pred)
                pred = vqa_tool.processDigitArticle(pred)

            vqa_acc = 1 if pred == gt_ans else 0

            acc.append(vqa_acc)

        accuracy = sum(acc) / len(acc) * 100
        metrics = {"agg_metrics": accuracy, "acc": accuracy}

        with open(
            os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a"
        ) as f:
            f.write(json.dumps(metrics) + "\n")

        logging.info(metrics)

        return metrics

    @dist_utils.main_process
    def _save_result_leaderboard(self, results):
        """
        Saving the results in the format required for leaderboard evaluation.
        """
        result_leaderboard = []
        for res in results:
            result_leaderboard.append({
                "questionId": str(res['question_id']),
                "prediction": str(res["pred_ans"]),
            })

        result_file = registry.get_path("result_dir") + "_leaderboard.json"

        with open(result_file, "w") as f:
            json.dump(result_leaderboard, f)

        logging.info(f"Saved results for leaderboard evaluation at {result_file}")