File size: 5,670 Bytes
923da14
e04fc78
923da14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
title: Liveportrait Vid2Vid
emoji: 😻
colorFrom: blue
colorTo: indigo
sdk: gradio
sdk_version: 4.38.1
app_file: app.py
pinned: false
license: apache-2.0
---

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

<h1 align="center">This is the modification of LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control for allowing video as a source </h1>


<br>
<div align="center">
  <!-- <a href='LICENSE'><img src='https://img.shields.io/badge/license-MIT-yellow'></a> -->
  <a href='https://arxiv.org/pdf/2407.03168'><img src='https://img.shields.io/badge/arXiv-LivePortrait-red'></a>
  <a href='https://liveportrait.github.io'><img src='https://img.shields.io/badge/Project-LivePortrait-green'></a>
  <a href ='https://github.com/KwaiVGI/LivePortrait'>Official Liveportrait</a>
</div>
<br>

<p align="center">
  <img src="./assets/docs/showcase2.gif" alt="showcase">
  <br>
  πŸ”₯ For more results, visit LivePortrait <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> πŸ”₯
</p>


## πŸ”₯ Getting Started
### 1. Clone the code and prepare the environment
```bash
git clone https://github.com/KwaiVGI/LivePortrait
cd LivePortrait

# create env using conda
conda create -n LivePortrait python==3.9.18
conda activate LivePortrait
# install dependencies with pip
pip install -r requirements.txt
```

### 2. Download pretrained weights

Download the pretrained weights from HuggingFace:
```bash
# you may need to run `git lfs install` first
git clone https://huggingface.co/KwaiVGI/liveportrait pretrained_weights
```

Or, download all pretrained weights from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). We have packed all weights in one directory 😊. Unzip and place them in `./pretrained_weights` ensuring the directory structure is as follows:
```text
pretrained_weights
β”œβ”€β”€ insightface
β”‚   └── models
β”‚       └── buffalo_l
β”‚           β”œβ”€β”€ 2d106det.onnx
β”‚           └── det_10g.onnx
└── liveportrait
    β”œβ”€β”€ base_models
    β”‚   β”œβ”€β”€ appearance_feature_extractor.pth
    β”‚   β”œβ”€β”€ motion_extractor.pth
    β”‚   β”œβ”€β”€ spade_generator.pth
    β”‚   └── warping_module.pth
    β”œβ”€β”€ landmark.onnx
    └── retargeting_models
        └── stitching_retargeting_module.pth
```

### 3. Inference πŸš€

#### Fast hands-on
```bash
python inference.py
```

If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image, and generated result.

<p align="center">
  <img src="./assets/docs/inference.gif" alt="image">
</p>

Or, you can change the input by specifying the `-s` and `-d` arguments:

```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4

# disable pasting back to run faster
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 --no_flag_pasteback

# more options to see
python inference.py -h
```

For video: you can change the input by specifying the `-sd` and `-d` arguments:

```bash
python inference.py -sd assets/examples/driving/d3.mp4 -d assets/examples/driving/d0.mp4 -vd True

# disable pasting back to run faster
python inference.py -sd assets/examples/driving/d3.mp4 -d assets/examples/driving/d0.mp4 -vd True --no_flag_pasteback

```
#### Driving video auto-cropping

πŸ“• To use your own driving video, we **recommend**:
 - Crop it to a **1:1** aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-cropping by `--flag_crop_driving_video`.
 - Focus on the head area, similar to the example videos.
 - Minimize shoulder movement.
 - Make sure the first frame of driving video is a frontal face with **neutral expression**.

Below is a auto-cropping case by `--flag_crop_driving_video`:
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d13.mp4 --flag_crop_driving_video
```

If you find the results of auto-cropping is not well, you can modify the `--scale_crop_video`, `--vy_ratio_crop_video` options to adjust the scale and offset, or do it manually.

#### Template making
You can also use the `.pkl` file auto-generated to speed up the inference, and **protect privacy**, such as:
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d5.pkl
```

**Discover more interesting results on our [Homepage](https://liveportrait.github.io)** 😊

### 4. Gradio interface πŸ€—

We also provide a Gradio interface for a better experience, just run by:

```bash
python app.py
```

You can specify the `--server_port`, `--share`, `--server_name` arguments to satisfy your needs!




## Acknowledgements
We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface), [LivePortrait](https://github.com/KwaiVGI/LivePortrait) repositories, for their open research and contributions.

## Citation πŸ’–

```bibtex
@article{guo2024liveportrait,
  title   = {LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control},
  author  = {Guo, Jianzhu and Zhang, Dingyun and Liu, Xiaoqiang and Zhong, Zhizhou and Zhang, Yuan and Wan, Pengfei and Zhang, Di},
  journal = {arXiv preprint arXiv:2407.03168},
  year    = {2024}
}
```