File size: 30,670 Bytes
30f37fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
# coding: utf-8
"""
Pipeline of LivePortrait
"""
import matplotlib.pyplot as plt
import torch
torch.backends.cudnn.benchmark = True # disable CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR warning
import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
import numpy as np
import os
import os.path as osp
from rich.progress import track
from .config.argument_config import ArgumentConfig
from .config.inference_config import InferenceConfig
from .config.crop_config import CropConfig
from .utils.cropper import Cropper
from .utils.camera import get_rotation_matrix
from .utils.video import images2video, concat_frames,concat_frame, get_fps, add_audio_to_video, has_audio_stream
from .utils.crop import _transform_img, prepare_paste_back, paste_back
from .utils.io import load_image_rgb, load_driving_info, resize_to_limit, dump, load
from .utils.helper import mkdir, basename, dct2device, is_video, is_template, remove_suffix
from .utils.rprint import rlog as log
# from .utils.viz import viz_lmk
from .live_portrait_wrapper import LivePortraitWrapper
def make_abs_path(fn):
return osp.join(osp.dirname(osp.realpath(__file__)), fn)
class LivePortraitPipeline(object):
def __init__(self, inference_cfg: InferenceConfig, crop_cfg: CropConfig):
self.live_portrait_wrapper: LivePortraitWrapper = LivePortraitWrapper(inference_cfg=inference_cfg)
self.cropper: Cropper = Cropper(crop_cfg=crop_cfg)
def execute(self, args: ArgumentConfig):
# for convenience
inf_cfg = self.live_portrait_wrapper.inference_cfg
device = self.live_portrait_wrapper.device
crop_cfg = self.cropper.crop_cfg
######## process source portrait ########
img_rgb = load_image_rgb(args.source_image)
# cv2.imwrite("./img.png", img_rgb)
img_rgb = resize_to_limit(img_rgb, inf_cfg.source_max_dim, inf_cfg.source_division)
log(f"Load source image from {args.source_image}")
crop_info = self.cropper.crop_source_image(img_rgb, crop_cfg)
if crop_info is None:
raise Exception("No face detected in the source image!")
source_lmk = crop_info['lmk_crop']
img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256']
if inf_cfg.flag_do_crop:
I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
else:
img_crop_256x256 = cv2.resize(img_rgb, (256, 256)) # force to resize to 256x256
I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
x_c_s = x_s_info['kp']
R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)
flag_lip_zero = inf_cfg.flag_lip_zero # not overwrite
if flag_lip_zero:
# let lip-open scalar to be 0 at first
c_d_lip_before_animation = [0.]
combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
if combined_lip_ratio_tensor_before_animation[0][0] < inf_cfg.lip_zero_threshold:
flag_lip_zero = False
else:
lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
############################################
######## process driving info ########
flag_load_from_template = is_template(args.driving_info)
driving_rgb_crop_256x256_lst = None
wfp_template = None
if flag_load_from_template:
# NOTE: load from template, it is fast, but the cropping video is None
log(f"Load from template: {args.driving_info}, NOT the video, so the cropping video and audio are both NULL.", style='bold green')
template_dct = load(args.driving_info)
n_frames = template_dct['n_frames']
# set output_fps
output_fps = template_dct.get('output_fps', inf_cfg.output_fps)
log(f'The FPS of template: {output_fps}')
if args.flag_crop_driving_video:
log("Warning: flag_crop_driving_video is True, but the driving info is a template, so it is ignored.")
elif osp.exists(args.driving_info) and is_video(args.driving_info):
# load from video file, AND make motion template
log(f"Load video: {args.driving_info}")
if osp.isdir(args.driving_info):
output_fps = inf_cfg.output_fps
else:
output_fps = int(get_fps(args.driving_info))
log(f'The FPS of {args.driving_info} is: {output_fps}')
log(f"Load video file (mp4 mov avi etc...): {args.driving_info}")
driving_rgb_lst = load_driving_info(args.driving_info)
######## make motion template ########
log("Start making motion template...")
if inf_cfg.flag_crop_driving_video:
ret = self.cropper.crop_driving_video(driving_rgb_lst)
log(f'Driving video is cropped, {len(ret["frame_crop_lst"])} frames are processed.')
driving_rgb_crop_lst, driving_lmk_crop_lst = ret['frame_crop_lst'], ret['lmk_crop_lst']
driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_crop_lst]
else:
driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(driving_rgb_lst)
driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst] # force to resize to 256x256
c_d_eyes_lst, c_d_lip_lst = self.live_portrait_wrapper.calc_driving_ratio(driving_lmk_crop_lst)
# save the motion template
I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(driving_rgb_crop_256x256_lst)
template_dct = self.make_motion_template(I_d_lst, c_d_eyes_lst, c_d_lip_lst, output_fps=output_fps)
wfp_template = remove_suffix(args.driving_info) + '.pkl'
dump(wfp_template, template_dct)
log(f"Dump motion template to {wfp_template}")
n_frames = I_d_lst.shape[0]
else:
raise Exception(f"{args.driving_info} not exists or unsupported driving info types!")
#########################################
######## prepare for pasteback ########
I_p_pstbk_lst = None
if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
I_p_pstbk_lst = []
log("Prepared pasteback mask done.")
#########################################
I_p_lst = []
R_d_0, x_d_0_info = None, None
for i in track(range(n_frames), description='🚀Animating...', total=n_frames):
x_d_i_info = template_dct['motion'][i]
x_d_i_info = dct2device(x_d_i_info, device)
R_d_i = x_d_i_info['R_d']
if i == 0:
R_d_0 = R_d_i
x_d_0_info = x_d_i_info
if inf_cfg.flag_relative_motion:
R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
else:
R_new = R_d_i
delta_new = x_d_i_info['exp']
scale_new = x_s_info['scale']
t_new = x_d_i_info['t']
t_new[..., 2].fill_(0) # zero tz
x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
# Algorithm 1:
if not inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
# without stitching or retargeting
if flag_lip_zero:
x_d_i_new += lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
else:
pass
elif inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
# with stitching and without retargeting
if flag_lip_zero:
x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) + lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
else:
x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
else:
eyes_delta, lip_delta = None, None
if inf_cfg.flag_eye_retargeting:
c_d_eyes_i = c_d_eyes_lst[i]
combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eyes_i, source_lmk)
# ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s, combined_eye_ratio_tensor)
if inf_cfg.flag_lip_retargeting:
c_d_lip_i = c_d_lip_lst[i]
combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
# ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
lip_delta = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor)
if inf_cfg.flag_relative_motion: # use x_s
x_d_i_new = x_s + \
(eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
(lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
else: # use x_d,i
x_d_i_new = x_d_i_new + \
(eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
(lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
if inf_cfg.flag_stitching:
x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
out = self.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
I_p_lst.append(I_p_i)
if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
# TODO: pasteback is slow, considering optimize it using multi-threading or GPU
I_p_pstbk = paste_back(I_p_i, crop_info['M_c2o'], img_rgb, mask_ori_float)
I_p_pstbk_lst.append(I_p_pstbk)
mkdir(args.output_dir)
wfp_concat = None
flag_has_audio = (not flag_load_from_template) and has_audio_stream(args.driving_info)
######### build final concact result #########
# driving frame | source image | generation, or source image | generation
frames_concatenated = concat_frame(driving_rgb_crop_256x256_lst, img_crop_256x256, I_p_lst)
wfp_concat = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat.mp4')
images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps)
if flag_has_audio:
# final result with concact
wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat_with_audio.mp4')
add_audio_to_video(wfp_concat, args.driving_info, wfp_concat_with_audio)
os.replace(wfp_concat_with_audio, wfp_concat)
log(f"Replace {wfp_concat} with {wfp_concat_with_audio}")
# save drived result
wfp = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}.mp4')
if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
images2video(I_p_pstbk_lst, wfp=wfp, fps=output_fps)
else:
images2video(I_p_lst, wfp=wfp, fps=output_fps)
######### build final result #########
if flag_has_audio:
wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_with_audio.mp4')
add_audio_to_video(wfp, args.driving_info, wfp_with_audio)
os.replace(wfp_with_audio, wfp)
log(f"Replace {wfp} with {wfp_with_audio}")
# final log
if wfp_template not in (None, ''):
log(f'Animated template: {wfp_template}, you can specify `-d` argument with this template path next time to avoid cropping video, motion making and protecting privacy.', style='bold green')
log(f'Animated video: {wfp}')
log(f'Animated video with concact: {wfp_concat}')
return wfp, wfp_concat
def execute_source_video(self, args: ArgumentConfig):
# for convenience
inf_cfg = self.live_portrait_wrapper.inference_cfg
device = self.live_portrait_wrapper.device
crop_cfg = self.cropper.crop_cfg
# prepare source video
source_driving_rgb_crop_256x256_lst = None
source_wfp_template = None
if osp.exists(args.source_driving_info) and is_video(args.source_driving_info):
# load from video file, AND make motion template
log(f"Load video: {args.source_driving_info}")
if osp.isdir(args.source_driving_info):
output_fps = inf_cfg.output_fps
else:
output_fps = int(get_fps(args.source_driving_info))
log(f'The FPS of {args.source_driving_info} is: {output_fps}')
log(f"Load video file (mp4 mov avi etc...): {args.source_driving_info}")
source_driving_rgb_lst = load_driving_info(args.source_driving_info)
######## process source portrait ########
crop_info_lst = []
x_s_info_lst = []
x_c_s_lst=[]
R_s_lst=[]
f_s_lst=[]
x_s_lst=[]
img_crop_256x256_lst = []
img_rgb_lst = []
for img_rgb in source_driving_rgb_lst:
# img_rgb = load_image_rgb(args.source_image)
# cv2.imwrite("./img.png", img_rgb)
img_rgb = resize_to_limit(img_rgb, inf_cfg.source_max_dim, inf_cfg.source_division)
crop_info = self.cropper.crop_source_image(img_rgb, crop_cfg)
if crop_info is None:
raise Exception("No face detected in the source image!")
source_lmk = crop_info['lmk_crop']
img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256']
img_crop_256x256_lst.append(img_crop_256x256)
if inf_cfg.flag_do_crop:
I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
else:
img_crop_256x256 = cv2.resize(img_rgb, (256, 256)) # force to resize to 256x256
I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
x_c_s = x_s_info['kp']
R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)
x_c_s_lst.append(x_c_s)
R_s_lst.append(R_s)
f_s_lst.append(f_s)
x_s_lst.append(x_s)
x_s_info_lst.append(x_s_info)
crop_info_lst.append(crop_info)
img_rgb_lst.append(img_rgb)
flag_lip_zero = inf_cfg.flag_lip_zero # not overwrite
if flag_lip_zero:
# let lip-open scalar to be 0 at first
c_d_lip_before_animation = [0.]
combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
if combined_lip_ratio_tensor_before_animation[0][0] < inf_cfg.lip_zero_threshold:
flag_lip_zero = False
else:
lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
############################################
######## make motion template ########
log("Start making motion template...")
if inf_cfg.flag_crop_source_video:
ret = self.cropper.crop_driving_video(source_driving_rgb_lst)
log(f'source video is cropped, {len(ret["frame_crop_lst"])} frames are processed.')
source_driving_rgb_crop_lst, driving_lmk_crop_lst = ret['frame_crop_lst'], ret['lmk_crop_lst']
source_driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in source_driving_rgb_crop_lst]
else:
source_driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(source_driving_rgb_lst)
source_driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in source_driving_rgb_lst] # force to resize to 256x256
source_c_d_eyes_lst, source_c_d_lip_lst = self.live_portrait_wrapper.calc_driving_ratio(source_driving_lmk_crop_lst)
# save the motion template
source_I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(source_driving_rgb_crop_256x256_lst)
source_template_dct = self.make_motion_template(source_I_d_lst, source_c_d_eyes_lst, source_c_d_lip_lst, output_fps=output_fps)
source_wfp_template = remove_suffix(args.source_driving_info) + '.pkl'
dump(source_wfp_template, source_template_dct)
log(f"Dump motion template to {source_wfp_template}")
source_n_frames = source_I_d_lst.shape[0]
else:
raise Exception(f"{args.source_driving_info} not exists or unsupported driving info types!")
######## process driving info ########
flag_load_from_template = is_template(args.driving_info)
driving_rgb_crop_256x256_lst = None
wfp_template = None
if flag_load_from_template:
# NOTE: load from template, it is fast, but the cropping video is None
log(f"Load from template: {args.driving_info}, NOT the video, so the cropping video and audio are both NULL.", style='bold green')
template_dct = load(args.driving_info)
n_frames = template_dct['n_frames']
# set output_fps
output_fps = template_dct.get('output_fps', inf_cfg.output_fps)
log(f'The FPS of template: {output_fps}')
if args.flag_crop_driving_video:
log("Warning: flag_crop_driving_video is True, but the driving info is a template, so it is ignored.")
elif osp.exists(args.driving_info) and is_video(args.driving_info):
# load from video file, AND make motion template
log(f"Load video: {args.driving_info}")
if osp.isdir(args.driving_info):
output_fps = inf_cfg.output_fps
else:
output_fps = int(get_fps(args.driving_info))
log(f'The FPS of {args.driving_info} is: {output_fps}')
log(f"Load video file (mp4 mov avi etc...): {args.driving_info}")
driving_rgb_lst = load_driving_info(args.driving_info)
######## make motion template ########
log("Start making motion template...")
if inf_cfg.flag_crop_driving_video:
ret = self.cropper.crop_driving_video(driving_rgb_lst)
log(f'Driving video is cropped, {len(ret["frame_crop_lst"])} frames are processed.')
driving_rgb_crop_lst, driving_lmk_crop_lst = ret['frame_crop_lst'], ret['lmk_crop_lst']
driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_crop_lst]
else:
driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(driving_rgb_lst)
driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst] # force to resize to 256x256
c_d_eyes_lst, c_d_lip_lst = self.live_portrait_wrapper.calc_driving_ratio(driving_lmk_crop_lst)
# save the motion template
I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(driving_rgb_crop_256x256_lst)
template_dct = self.make_motion_template(I_d_lst, c_d_eyes_lst, c_d_lip_lst, output_fps=output_fps)
wfp_template = remove_suffix(args.driving_info) + '.pkl'
dump(wfp_template, template_dct)
log(f"Dump motion template to {wfp_template}")
n_frames = I_d_lst.shape[0]
else:
raise Exception(f"{args.driving_info} not exists or unsupported driving info types!")
#########################################
n_frame = min(n_frames,source_n_frames)
I_p_lst = []
R_d_0, x_d_0_info = None, None
######## prepare for pasteback ########
I_p_pstbk_lst = None
mask_ori_float_lst=[]
if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
for i in range(n_frame):
mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, crop_info_lst[i]['M_c2o'], dsize=(img_rgb_lst[i].shape[1], img_rgb_lst[i].shape[0]))
mask_ori_float_lst.append(mask_ori_float)
I_p_pstbk_lst = []
log("Prepared pasteback mask done.")
#########################################
for i in track(range(n_frame), description='🚀Animating...', total=n_frame):
x_d_i_info = template_dct['motion'][i]
x_d_i_info = dct2device(x_d_i_info, device)
R_d_i = x_d_i_info['R_d']
if i == 0:
R_d_0 = R_d_i
x_d_0_info = x_d_i_info
if inf_cfg.flag_relative_motion:
R_new = R_s_lst[i]
delta_new = x_d_i_info['exp'] - x_d_0_info['exp']
scale_new = x_s_info_lst[i]['scale']
t_new = x_s_info_lst[i]['t']
# R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s_lst[i]
# delta_new = x_s_info_lst[i]['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
# scale_new = x_s_info_lst[i]['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
# t_new = x_s_info_lst[i]['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
# R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s_lst[i]
# delta_new =x_d_i_info['exp'] - x_d_0_info['exp']
# scale_new = x_s_info_lst[i]['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
# t_new = x_s_info_lst[i]['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
else:
R_new = R_d_i
delta_new = x_d_i_info['exp']
scale_new = x_s_info_lst[i]['scale']
t_new = x_d_i_info['t']
t_new[..., 2].fill_(0) # zero tz
x_d_i_new = scale_new * (x_c_s_lst[i] @ R_new + delta_new) + t_new
# Algorithm 1:
if not inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
# without stitching or retargeting
if flag_lip_zero:
x_d_i_new += lip_delta_before_animation.reshape(-1, x_s_lst[i].shape[1], 3)
else:
pass
elif inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
# with stitching and without retargeting
if flag_lip_zero:
x_d_i_new = self.live_portrait_wrapper.stitching(x_s_lst[i], x_d_i_new) + lip_delta_before_animation.reshape(-1, x_s_lst[i].shape[1], 3)
else:
x_d_i_new = self.live_portrait_wrapper.stitching(x_s_lst[i], x_d_i_new)
else:
eyes_delta, lip_delta = None, None
if inf_cfg.flag_eye_retargeting:
c_d_eyes_i = c_d_eyes_lst[i]
combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eyes_i, source_lmk)
# ∆_eyes,i = R_eyes(x_s_lst[i]; c_s,eyes, c_d,eyes,i)
eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s_lst[i], combined_eye_ratio_tensor)
if inf_cfg.flag_lip_retargeting:
c_d_lip_i = c_d_lip_lst[i]
combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
# ∆_lip,i = R_lip(x_s_lst[i]; c_s,lip, c_d,lip,i)
lip_delta = self.live_portrait_wrapper.retarget_lip(x_s_lst[i], combined_lip_ratio_tensor)
if inf_cfg.flag_relative_motion: # use x_s_lst[i]
x_d_i_new = x_s_lst[i] + \
(eyes_delta.reshape(-1, x_s_lst[i].shape[1], 3) if eyes_delta is not None else 0) + \
(lip_delta.reshape(-1, x_s_lst[i].shape[1], 3) if lip_delta is not None else 0)
else: # use x_d,i
x_d_i_new = x_d_i_new + \
(eyes_delta.reshape(-1, x_s_lst[i].shape[1], 3) if eyes_delta is not None else 0) + \
(lip_delta.reshape(-1, x_s_lst[i].shape[1], 3) if lip_delta is not None else 0)
if inf_cfg.flag_stitching:
x_d_i_new = self.live_portrait_wrapper.stitching(x_s_lst[i], x_d_i_new)
out = self.live_portrait_wrapper.warp_decode(f_s_lst[i], x_s_lst[i], x_d_i_new)
I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
I_p_lst.append(I_p_i)
if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
# TODO: pasteback is slow, considering optimize it using multi-threading or GPU
I_p_pstbk = paste_back(I_p_i, crop_info_lst[i]['M_c2o'], img_rgb_lst[i], mask_ori_float_lst[i])
I_p_pstbk_lst.append(I_p_pstbk)
# end for
mkdir(args.output_dir)
wfp_concat = None
flag_has_audio = (not flag_load_from_template) and has_audio_stream(args.driving_info)
######### build final concact result #########
# driving frame | source image | generation, or source image | generation
frames_concatenated = concat_frames(driving_rgb_crop_256x256_lst, img_crop_256x256_lst, I_p_lst)
wfp_concat = osp.join(args.output_dir, f'{basename(args.source_driving_info)}--{basename(args.driving_info)}_concat.mp4')
images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps)
if flag_has_audio:
# final result with concact
wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source_driving_info)}--{basename(args.driving_info)}_concat_with_audio.mp4')
add_audio_to_video(wfp_concat, args.driving_info, wfp_concat_with_audio)
os.replace(wfp_concat_with_audio, wfp_concat)
log(f"Replace {wfp_concat} with {wfp_concat_with_audio}")
# save drived result
wfp = osp.join(args.output_dir, f'{basename(args.source_driving_info)}--{basename(args.driving_info)}.mp4')
if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
images2video(I_p_pstbk_lst, wfp=wfp, fps=output_fps)
else:
images2video(I_p_lst, wfp=wfp, fps=output_fps)
######### build final result #########
if flag_has_audio:
wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_with_audio.mp4')
add_audio_to_video(wfp, args.driving_info, wfp_with_audio)
os.replace(wfp_with_audio, wfp)
log(f"Replace {wfp} with {wfp_with_audio}")
# final log
if wfp_template not in (None, ''):
log(f'Animated template: {wfp_template}, you can specify `-d` argument with this template path next time to avoid cropping video, motion making and protecting privacy.', style='bold green')
log(f'Animated video: {wfp}')
log(f'Animated video with concact: {wfp_concat}')
return wfp, wfp_concat
def make_motion_template(self, I_d_lst, c_d_eyes_lst, c_d_lip_lst, **kwargs):
n_frames = I_d_lst.shape[0]
template_dct = {
'n_frames': n_frames,
'output_fps': kwargs.get('output_fps', 25),
'motion': [],
'c_d_eyes_lst': [],
'c_d_lip_lst': [],
}
for i in track(range(n_frames), description='Making motion templates...', total=n_frames):
# collect s_d, R_d, δ_d and t_d for inference
I_d_i = I_d_lst[i]
x_d_i_info = self.live_portrait_wrapper.get_kp_info(I_d_i)
R_d_i = get_rotation_matrix(x_d_i_info['pitch'], x_d_i_info['yaw'], x_d_i_info['roll'])
item_dct = {
'scale': x_d_i_info['scale'].cpu().numpy().astype(np.float32),
'R_d': R_d_i.cpu().numpy().astype(np.float32),
'exp': x_d_i_info['exp'].cpu().numpy().astype(np.float32),
't': x_d_i_info['t'].cpu().numpy().astype(np.float32),
}
template_dct['motion'].append(item_dct)
c_d_eyes = c_d_eyes_lst[i].astype(np.float32)
template_dct['c_d_eyes_lst'].append(c_d_eyes)
c_d_lip = c_d_lip_lst[i].astype(np.float32)
template_dct['c_d_lip_lst'].append(c_d_lip)
return template_dct
|