File size: 13,335 Bytes
30f37fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# coding: utf-8

"""

cropping function and the related preprocess functions for cropping

"""

import numpy as np
import os.path as osp
from math import sin, cos, acos, degrees
import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) # NOTE: enforce single thread
from .rprint import rprint as print

DTYPE = np.float32
CV2_INTERP = cv2.INTER_LINEAR

def make_abs_path(fn):
    return osp.join(osp.dirname(osp.realpath(__file__)), fn)

def _transform_img(img, M, dsize, flags=CV2_INTERP, borderMode=None):
    """ conduct similarity or affine transformation to the image, do not do border operation!

    img:

    M: 2x3 matrix or 3x3 matrix

    dsize: target shape (width, height)

    """
    if isinstance(dsize, tuple) or isinstance(dsize, list):
        _dsize = tuple(dsize)
    else:
        _dsize = (dsize, dsize)

    if borderMode is not None:
        return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags, borderMode=borderMode, borderValue=(0, 0, 0))
    else:
        return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags)


def _transform_pts(pts, M):
    """ conduct similarity or affine transformation to the pts

    pts: Nx2 ndarray

    M: 2x3 matrix or 3x3 matrix

    return: Nx2

    """
    return pts @ M[:2, :2].T + M[:2, 2]


def parse_pt2_from_pt101(pt101, use_lip=True):
    """

    parsing the 2 points according to the 101 points, which cancels the roll

    """
    # the former version use the eye center, but it is not robust, now use interpolation
    pt_left_eye = np.mean(pt101[[39, 42, 45, 48]], axis=0)  # left eye center
    pt_right_eye = np.mean(pt101[[51, 54, 57, 60]], axis=0)  # right eye center

    if use_lip:
        # use lip
        pt_center_eye = (pt_left_eye + pt_right_eye) / 2
        pt_center_lip = (pt101[75] + pt101[81]) / 2
        pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0)
    else:
        pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0)
    return pt2


def parse_pt2_from_pt106(pt106, use_lip=True):
    """

    parsing the 2 points according to the 106 points, which cancels the roll

    """
    pt_left_eye = np.mean(pt106[[33, 35, 40, 39]], axis=0)  # left eye center
    pt_right_eye = np.mean(pt106[[87, 89, 94, 93]], axis=0)  # right eye center

    if use_lip:
        # use lip
        pt_center_eye = (pt_left_eye + pt_right_eye) / 2
        pt_center_lip = (pt106[52] + pt106[61]) / 2
        pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0)
    else:
        pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0)
    return pt2


def parse_pt2_from_pt203(pt203, use_lip=True):
    """

    parsing the 2 points according to the 203 points, which cancels the roll

    """
    pt_left_eye = np.mean(pt203[[0, 6, 12, 18]], axis=0)  # left eye center
    pt_right_eye = np.mean(pt203[[24, 30, 36, 42]], axis=0)  # right eye center
    if use_lip:
        # use lip
        pt_center_eye = (pt_left_eye + pt_right_eye) / 2
        pt_center_lip = (pt203[48] + pt203[66]) / 2
        pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0)
    else:
        pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0)
    return pt2


def parse_pt2_from_pt68(pt68, use_lip=True):
    """

    parsing the 2 points according to the 68 points, which cancels the roll

    """
    lm_idx = np.array([31, 37, 40, 43, 46, 49, 55], dtype=np.int32) - 1
    if use_lip:
        pt5 = np.stack([
            np.mean(pt68[lm_idx[[1, 2]], :], 0),  # left eye
            np.mean(pt68[lm_idx[[3, 4]], :], 0),  # right eye
            pt68[lm_idx[0], :],  # nose
            pt68[lm_idx[5], :],  # lip
            pt68[lm_idx[6], :]   # lip
        ], axis=0)

        pt2 = np.stack([
            (pt5[0] + pt5[1]) / 2,
            (pt5[3] + pt5[4]) / 2
        ], axis=0)
    else:
        pt2 = np.stack([
            np.mean(pt68[lm_idx[[1, 2]], :], 0),  # left eye
            np.mean(pt68[lm_idx[[3, 4]], :], 0),  # right eye
        ], axis=0)

    return pt2


def parse_pt2_from_pt5(pt5, use_lip=True):
    """

    parsing the 2 points according to the 5 points, which cancels the roll

    """
    if use_lip:
        pt2 = np.stack([
            (pt5[0] + pt5[1]) / 2,
            (pt5[3] + pt5[4]) / 2
        ], axis=0)
    else:
        pt2 = np.stack([
            pt5[0],
            pt5[1]
        ], axis=0)
    return pt2


def parse_pt2_from_pt_x(pts, use_lip=True):
    if pts.shape[0] == 101:
        pt2 = parse_pt2_from_pt101(pts, use_lip=use_lip)
    elif pts.shape[0] == 106:
        pt2 = parse_pt2_from_pt106(pts, use_lip=use_lip)
    elif pts.shape[0] == 68:
        pt2 = parse_pt2_from_pt68(pts, use_lip=use_lip)
    elif pts.shape[0] == 5:
        pt2 = parse_pt2_from_pt5(pts, use_lip=use_lip)
    elif pts.shape[0] == 203:
        pt2 = parse_pt2_from_pt203(pts, use_lip=use_lip)
    elif pts.shape[0] > 101:
        # take the first 101 points
        pt2 = parse_pt2_from_pt101(pts[:101], use_lip=use_lip)
    else:
        raise Exception(f'Unknow shape: {pts.shape}')

    if not use_lip:
        # NOTE: to compile with the latter code, need to rotate the pt2 90 degrees clockwise manually
        v = pt2[1] - pt2[0]
        pt2[1, 0] = pt2[0, 0] - v[1]
        pt2[1, 1] = pt2[0, 1] + v[0]

    return pt2


def parse_rect_from_landmark(

    pts,

    scale=1.5,

    need_square=True,

    vx_ratio=0,

    vy_ratio=0,

    use_deg_flag=False,

    **kwargs

):
    """parsing center, size, angle from 101/68/5/x landmarks

    vx_ratio: the offset ratio along the pupil axis x-axis, multiplied by size

    vy_ratio: the offset ratio along the pupil axis y-axis, multiplied by size, which is used to contain more forehead area



    judge with pts.shape

    """
    pt2 = parse_pt2_from_pt_x(pts, use_lip=kwargs.get('use_lip', True))

    uy = pt2[1] - pt2[0]
    l = np.linalg.norm(uy)
    if l <= 1e-3:
        uy = np.array([0, 1], dtype=DTYPE)
    else:
        uy /= l
    ux = np.array((uy[1], -uy[0]), dtype=DTYPE)

    # the rotation degree of the x-axis, the clockwise is positive, the counterclockwise is negative (image coordinate system)
    # print(uy)
    # print(ux)
    angle = acos(ux[0])
    if ux[1] < 0:
        angle = -angle

    # rotation matrix
    M = np.array([ux, uy])

    # calculate the size which contains the angle degree of the bbox, and the center
    center0 = np.mean(pts, axis=0)
    rpts = (pts - center0) @ M.T  # (M @ P.T).T = P @ M.T
    lt_pt = np.min(rpts, axis=0)
    rb_pt = np.max(rpts, axis=0)
    center1 = (lt_pt + rb_pt) / 2

    size = rb_pt - lt_pt
    if need_square:
        m = max(size[0], size[1])
        size[0] = m
        size[1] = m

    size *= scale  # scale size
    center = center0 + ux * center1[0] + uy * center1[1]  # counterclockwise rotation, equivalent to M.T @ center1.T
    center = center + ux * (vx_ratio * size) + uy * \
        (vy_ratio * size)  # considering the offset in vx and vy direction

    if use_deg_flag:
        angle = degrees(angle)

    return center, size, angle


def parse_bbox_from_landmark(pts, **kwargs):
    center, size, angle = parse_rect_from_landmark(pts, **kwargs)
    cx, cy = center
    w, h = size

    # calculate the vertex positions before rotation
    bbox = np.array([
        [cx-w/2, cy-h/2],  # left, top
        [cx+w/2, cy-h/2],
        [cx+w/2, cy+h/2],  # right, bottom
        [cx-w/2, cy+h/2]
    ], dtype=DTYPE)

    # construct rotation matrix
    bbox_rot = bbox.copy()
    R = np.array([
        [np.cos(angle), -np.sin(angle)],
        [np.sin(angle),  np.cos(angle)]
    ], dtype=DTYPE)

    # calculate the relative position of each vertex from the rotation center, then rotate these positions, and finally add the coordinates of the rotation center
    bbox_rot = (bbox_rot - center) @ R.T + center

    return {
        'center': center,  # 2x1
        'size': size,  # scalar
        'angle': angle,  # rad, counterclockwise
        'bbox': bbox,  # 4x2
        'bbox_rot': bbox_rot,  # 4x2
    }


def crop_image_by_bbox(img, bbox, lmk=None, dsize=512, angle=None, flag_rot=False, **kwargs):
    left, top, right, bot = bbox
    if int(right - left) != int(bot - top):
        print(f'right-left {right-left} != bot-top {bot-top}')
    size = right - left

    src_center = np.array([(left + right) / 2, (top + bot) / 2], dtype=DTYPE)
    tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE)

    s = dsize / size  # scale
    if flag_rot and angle is not None:
        costheta, sintheta = cos(angle), sin(angle)
        cx, cy = src_center[0], src_center[1]  # ori center
        tcx, tcy = tgt_center[0], tgt_center[1]  # target center
        # need to infer
        M_o2c = np.array(
            [[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)],
             [-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]],
            dtype=DTYPE
        )
    else:
        M_o2c = np.array(
            [[s, 0, tgt_center[0] - s * src_center[0]],
             [0, s, tgt_center[1] - s * src_center[1]]],
            dtype=DTYPE
        )

    # if flag_rot and angle is None:
        # print('angle is None, but flag_rotate is True', style="bold yellow")

    img_crop = _transform_img(img, M_o2c, dsize=dsize, borderMode=kwargs.get('borderMode', None))
    lmk_crop = _transform_pts(lmk, M_o2c) if lmk is not None else None

    M_o2c = np.vstack([M_o2c, np.array([0, 0, 1], dtype=DTYPE)])
    M_c2o = np.linalg.inv(M_o2c)

    # cv2.imwrite('crop.jpg', img_crop)

    return {
        'img_crop': img_crop,
        'lmk_crop': lmk_crop,
        'M_o2c': M_o2c,
        'M_c2o': M_c2o,
    }


def _estimate_similar_transform_from_pts(

    pts,

    dsize,

    scale=1.5,

    vx_ratio=0,

    vy_ratio=-0.1,

    flag_do_rot=True,

    **kwargs

):
    """ calculate the affine matrix of the cropped image from sparse points, the original image to the cropped image, the inverse is the cropped image to the original image

    pts: landmark, 101 or 68 points or other points, Nx2

    scale: the larger scale factor, the smaller face ratio

    vx_ratio: x shift

    vy_ratio: y shift, the smaller the y shift, the lower the face region

    rot_flag: if it is true, conduct correction

    """
    center, size, angle = parse_rect_from_landmark(
        pts, scale=scale, vx_ratio=vx_ratio, vy_ratio=vy_ratio,
        use_lip=kwargs.get('use_lip', True)
    )

    s = dsize / size[0]  # scale
    tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE)  # center of dsize

    if flag_do_rot:
        costheta, sintheta = cos(angle), sin(angle)
        cx, cy = center[0], center[1]  # ori center
        tcx, tcy = tgt_center[0], tgt_center[1]  # target center
        # need to infer
        M_INV = np.array(
            [[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)],
             [-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]],
            dtype=DTYPE
        )
    else:
        M_INV = np.array(
            [[s, 0, tgt_center[0] - s * center[0]],
             [0, s, tgt_center[1] - s * center[1]]],
            dtype=DTYPE
        )

    M_INV_H = np.vstack([M_INV, np.array([0, 0, 1])])
    M = np.linalg.inv(M_INV_H)

    # M_INV is from the original image to the cropped image, M is from the cropped image to the original image
    return M_INV, M[:2, ...]


def crop_image(img, pts: np.ndarray, **kwargs):
    dsize = kwargs.get('dsize', 224)
    scale = kwargs.get('scale', 1.5)  # 1.5 | 1.6
    vy_ratio = kwargs.get('vy_ratio', -0.1)  # -0.0625 | -0.1

    M_INV, _ = _estimate_similar_transform_from_pts(
        pts,
        dsize=dsize,
        scale=scale,
        vy_ratio=vy_ratio,
        flag_do_rot=kwargs.get('flag_do_rot', True),
    )

    img_crop = _transform_img(img, M_INV, dsize)  # origin to crop
    pt_crop = _transform_pts(pts, M_INV)

    M_o2c = np.vstack([M_INV, np.array([0, 0, 1], dtype=DTYPE)])
    M_c2o = np.linalg.inv(M_o2c)

    ret_dct = {
        'M_o2c': M_o2c,  # from the original image to the cropped image 3x3
        'M_c2o': M_c2o,  # from the cropped image to the original image 3x3
        'img_crop': img_crop,  # the cropped image
        'pt_crop': pt_crop,  # the landmarks of the cropped image
    }

    return ret_dct

def average_bbox_lst(bbox_lst):
    if len(bbox_lst) == 0:
        return None
    bbox_arr = np.array(bbox_lst)
    return np.mean(bbox_arr, axis=0).tolist()

def prepare_paste_back(mask_crop, crop_M_c2o, dsize):
    """prepare mask for later image paste back

    """
    mask_ori = _transform_img(mask_crop, crop_M_c2o, dsize)
    mask_ori = mask_ori.astype(np.float32) / 255.
    return mask_ori

def paste_back(img_crop, M_c2o, img_ori, mask_ori):
    """paste back the image

    """
    dsize = (img_ori.shape[1], img_ori.shape[0])
    result = _transform_img(img_crop, M_c2o, dsize=dsize)
    result = np.clip(mask_ori * result + (1 - mask_ori) * img_ori, 0, 255).astype(np.uint8)
    return result