File size: 12,817 Bytes
30f37fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# coding: utf-8

"""

Wrapper for LivePortrait core functions

"""

import os.path as osp
import numpy as np
import cv2
import torch
import yaml

from .utils.timer import Timer
from .utils.helper import load_model, concat_feat
from .utils.camera import headpose_pred_to_degree, get_rotation_matrix
from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio
from .config.inference_config import InferenceConfig
from .utils.rprint import rlog as log


class LivePortraitWrapper(object):

    def __init__(self, inference_cfg: InferenceConfig):

        self.inference_cfg = inference_cfg
        self.device_id = inference_cfg.device_id
        if inference_cfg.flag_force_cpu:
            self.device = 'cpu'
        else:
            self.device = 'cuda:' + str(self.device_id)

        model_config = yaml.load(open(inference_cfg.models_config, 'r'), Loader=yaml.SafeLoader)
        # init F
        self.appearance_feature_extractor = load_model(inference_cfg.checkpoint_F, model_config, self.device, 'appearance_feature_extractor')
        log(f'Load appearance_feature_extractor done.')
        # init M
        self.motion_extractor = load_model(inference_cfg.checkpoint_M, model_config, self.device, 'motion_extractor')
        log(f'Load motion_extractor done.')
        # init W
        self.warping_module = load_model(inference_cfg.checkpoint_W, model_config, self.device, 'warping_module')
        log(f'Load warping_module done.')
        # init G
        self.spade_generator = load_model(inference_cfg.checkpoint_G, model_config, self.device, 'spade_generator')
        log(f'Load spade_generator done.')
        # init S and R
        if inference_cfg.checkpoint_S is not None and osp.exists(inference_cfg.checkpoint_S):
            self.stitching_retargeting_module = load_model(inference_cfg.checkpoint_S, model_config, self.device, 'stitching_retargeting_module')
            log(f'Load stitching_retargeting_module done.')
        else:
            self.stitching_retargeting_module = None


        self.timer = Timer()

    def update_config(self, user_args):
        for k, v in user_args.items():
            if hasattr(self.inference_cfg, k):
                setattr(self.inference_cfg, k, v)

    def prepare_source(self, img: np.ndarray) -> torch.Tensor:
        """ construct the input as standard

        img: HxWx3, uint8, 256x256

        """
        h, w = img.shape[:2]
        if h != self.inference_cfg.input_shape[0] or w != self.inference_cfg.input_shape[1]:
            x = cv2.resize(img, (self.inference_cfg.input_shape[0], self.inference_cfg.input_shape[1]))
        else:
            x = img.copy()

        if x.ndim == 3:
            x = x[np.newaxis].astype(np.float32) / 255.  # HxWx3 -> 1xHxWx3, normalized to 0~1
        elif x.ndim == 4:
            x = x.astype(np.float32) / 255.  # BxHxWx3, normalized to 0~1
        else:
            raise ValueError(f'img ndim should be 3 or 4: {x.ndim}')
        x = np.clip(x, 0, 1)  # clip to 0~1
        x = torch.from_numpy(x).permute(0, 3, 1, 2)  # 1xHxWx3 -> 1x3xHxW
        x = x.to(self.device)
        return x

    def prepare_driving_videos(self, imgs) -> torch.Tensor:
        """ construct the input as standard

        imgs: NxBxHxWx3, uint8

        """
        if isinstance(imgs, list):
            _imgs = np.array(imgs)[..., np.newaxis]  # TxHxWx3x1
        elif isinstance(imgs, np.ndarray):
            _imgs = imgs
        else:
            raise ValueError(f'imgs type error: {type(imgs)}')

        y = _imgs.astype(np.float32) / 255.
        y = np.clip(y, 0, 1)  # clip to 0~1
        y = torch.from_numpy(y).permute(0, 4, 3, 1, 2)  # TxHxWx3x1 -> Tx1x3xHxW
        y = y.to(self.device)

        return y

    def extract_feature_3d(self, x: torch.Tensor) -> torch.Tensor:
        """ get the appearance feature of the image by F

        x: Bx3xHxW, normalized to 0~1

        """
        with torch.no_grad():
            with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
                feature_3d = self.appearance_feature_extractor(x)

        return feature_3d.float()

    def get_kp_info(self, x: torch.Tensor, **kwargs) -> dict:
        """ get the implicit keypoint information

        x: Bx3xHxW, normalized to 0~1

        flag_refine_info: whether to transform the pose to degrees and the dimention of the reshape

        return: A dict contains keys: 'pitch', 'yaw', 'roll', 't', 'exp', 'scale', 'kp'

        """
        with torch.no_grad():
            with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
                kp_info = self.motion_extractor(x)

            if self.inference_cfg.flag_use_half_precision:
                # float the dict
                for k, v in kp_info.items():
                    if isinstance(v, torch.Tensor):
                        kp_info[k] = v.float()

        flag_refine_info: bool = kwargs.get('flag_refine_info', True)
        if flag_refine_info:
            bs = kp_info['kp'].shape[0]
            kp_info['pitch'] = headpose_pred_to_degree(kp_info['pitch'])[:, None]  # Bx1
            kp_info['yaw'] = headpose_pred_to_degree(kp_info['yaw'])[:, None]  # Bx1
            kp_info['roll'] = headpose_pred_to_degree(kp_info['roll'])[:, None]  # Bx1
            kp_info['kp'] = kp_info['kp'].reshape(bs, -1, 3)  # BxNx3
            kp_info['exp'] = kp_info['exp'].reshape(bs, -1, 3)  # BxNx3

        return kp_info

    def get_pose_dct(self, kp_info: dict) -> dict:
        pose_dct = dict(
            pitch=headpose_pred_to_degree(kp_info['pitch']).item(),
            yaw=headpose_pred_to_degree(kp_info['yaw']).item(),
            roll=headpose_pred_to_degree(kp_info['roll']).item(),
        )
        return pose_dct

    def get_fs_and_kp_info(self, source_prepared, driving_first_frame):

        # get the canonical keypoints of source image by M
        source_kp_info = self.get_kp_info(source_prepared, flag_refine_info=True)
        source_rotation = get_rotation_matrix(source_kp_info['pitch'], source_kp_info['yaw'], source_kp_info['roll'])

        # get the canonical keypoints of first driving frame by M
        driving_first_frame_kp_info = self.get_kp_info(driving_first_frame, flag_refine_info=True)
        driving_first_frame_rotation = get_rotation_matrix(
            driving_first_frame_kp_info['pitch'],
            driving_first_frame_kp_info['yaw'],
            driving_first_frame_kp_info['roll']
        )

        # get feature volume by F
        source_feature_3d = self.extract_feature_3d(source_prepared)

        return source_kp_info, source_rotation, source_feature_3d, driving_first_frame_kp_info, driving_first_frame_rotation

    def transform_keypoint(self, kp_info: dict):
        """

        transform the implicit keypoints with the pose, shift, and expression deformation

        kp: BxNx3

        """
        kp = kp_info['kp']    # (bs, k, 3)
        pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll']

        t, exp = kp_info['t'], kp_info['exp']
        scale = kp_info['scale']

        pitch = headpose_pred_to_degree(pitch)
        yaw = headpose_pred_to_degree(yaw)
        roll = headpose_pred_to_degree(roll)

        bs = kp.shape[0]
        if kp.ndim == 2:
            num_kp = kp.shape[1] // 3  # Bx(num_kpx3)
        else:
            num_kp = kp.shape[1]  # Bxnum_kpx3

        rot_mat = get_rotation_matrix(pitch, yaw, roll)    # (bs, 3, 3)

        # Eqn.2: s * (R * x_c,s + exp) + t
        kp_transformed = kp.view(bs, num_kp, 3) @ rot_mat + exp.view(bs, num_kp, 3)
        kp_transformed *= scale[..., None]  # (bs, k, 3) * (bs, 1, 1) = (bs, k, 3)
        kp_transformed[:, :, 0:2] += t[:, None, 0:2]  # remove z, only apply tx ty

        return kp_transformed

    def retarget_eye(self, kp_source: torch.Tensor, eye_close_ratio: torch.Tensor) -> torch.Tensor:
        """

        kp_source: BxNx3

        eye_close_ratio: Bx3

        Return: Bx(3*num_kp+2)

        """
        feat_eye = concat_feat(kp_source, eye_close_ratio)

        with torch.no_grad():
            delta = self.stitching_retargeting_module['eye'](feat_eye)

        return delta

    def retarget_lip(self, kp_source: torch.Tensor, lip_close_ratio: torch.Tensor) -> torch.Tensor:
        """

        kp_source: BxNx3

        lip_close_ratio: Bx2

        """
        feat_lip = concat_feat(kp_source, lip_close_ratio)

        with torch.no_grad():
            delta = self.stitching_retargeting_module['lip'](feat_lip)

        return delta

    def stitch(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
        """

        kp_source: BxNx3

        kp_driving: BxNx3

        Return: Bx(3*num_kp+2)

        """
        feat_stiching = concat_feat(kp_source, kp_driving)

        with torch.no_grad():
            delta = self.stitching_retargeting_module['stitching'](feat_stiching)

        return delta

    def stitching(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
        """ conduct the stitching

        kp_source: Bxnum_kpx3

        kp_driving: Bxnum_kpx3

        """

        if self.stitching_retargeting_module is not None:

            bs, num_kp = kp_source.shape[:2]

            kp_driving_new = kp_driving.clone()
            delta = self.stitch(kp_source, kp_driving_new)

            delta_exp = delta[..., :3*num_kp].reshape(bs, num_kp, 3)  # 1x20x3
            delta_tx_ty = delta[..., 3*num_kp:3*num_kp+2].reshape(bs, 1, 2)  # 1x1x2

            kp_driving_new += delta_exp
            kp_driving_new[..., :2] += delta_tx_ty

            return kp_driving_new

        return kp_driving

    def warp_decode(self, feature_3d: torch.Tensor, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
        """ get the image after the warping of the implicit keypoints

        feature_3d: Bx32x16x64x64, feature volume

        kp_source: BxNx3

        kp_driving: BxNx3

        """
        # The line 18 in Algorithm 1: D(W(f_s; x_s, x′_d,i))
        with torch.no_grad():
            with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
                # get decoder input
                ret_dct = self.warping_module(feature_3d, kp_source=kp_source, kp_driving=kp_driving)
                # decode
                ret_dct['out'] = self.spade_generator(feature=ret_dct['out'])

            # float the dict
            if self.inference_cfg.flag_use_half_precision:
                for k, v in ret_dct.items():
                    if isinstance(v, torch.Tensor):
                        ret_dct[k] = v.float()

        return ret_dct

    def parse_output(self, out: torch.Tensor) -> np.ndarray:
        """ construct the output as standard

        return: 1xHxWx3, uint8

        """
        out = np.transpose(out.data.cpu().numpy(), [0, 2, 3, 1])  # 1x3xHxW -> 1xHxWx3
        out = np.clip(out, 0, 1)  # clip to 0~1
        out = np.clip(out * 255, 0, 255).astype(np.uint8)  # 0~1 -> 0~255

        return out

    def calc_driving_ratio(self, driving_lmk_lst):
        input_eye_ratio_lst = []
        input_lip_ratio_lst = []
        for lmk in driving_lmk_lst:

            # for eyes retargeting
            input_eye_ratio_lst.append(calc_eye_close_ratio(lmk[None]))
            # for lip retargeting
            input_lip_ratio_lst.append(calc_lip_close_ratio(lmk[None]))
        return input_eye_ratio_lst, input_lip_ratio_lst

    def calc_combined_eye_ratio(self, c_d_eyes_i, source_lmk):
        c_s_eyes = calc_eye_close_ratio(source_lmk[None])
        c_s_eyes_tensor = torch.from_numpy(c_s_eyes).float().to(self.device)
        c_d_eyes_i_tensor = torch.Tensor([c_d_eyes_i[0][0]]).reshape(1, 1).to(self.device)
        # [c_s,eyes, c_d,eyes,i]
        combined_eye_ratio_tensor = torch.cat([c_s_eyes_tensor, c_d_eyes_i_tensor], dim=1)
        return combined_eye_ratio_tensor

    def calc_combined_lip_ratio(self, c_d_lip_i, source_lmk):
        c_s_lip = calc_lip_close_ratio(source_lmk[None])
        c_s_lip_tensor = torch.from_numpy(c_s_lip).float().to(self.device)
        c_d_lip_i_tensor = torch.Tensor([c_d_lip_i[0]]).to(self.device).reshape(1, 1) # 1x1
        # [c_s,lip, c_d,lip,i]
        combined_lip_ratio_tensor = torch.cat([c_s_lip_tensor, c_d_lip_i_tensor], dim=1) # 1x2
        return combined_lip_ratio_tensor