Spaces:
Build error
Build error
File size: 4,015 Bytes
24eb05d 5149f3a 24eb05d 5149f3a 24eb05d 5149f3a 24eb05d 5149f3a 24eb05d 5149f3a 24eb05d 5149f3a 24eb05d 6596e7b 24eb05d 4399e27 24eb05d 4399e27 5149f3a 4399e27 5149f3a 24eb05d 86dcebf 24eb05d 8658821 86dcebf b86bc3a 041afc1 24eb05d 041afc1 24eb05d 041afc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import os
os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt")
os.system("pip install imageio")
os.system("pip install albumentations==0.5.2")
os.system("pip install opencv-python")
os.system("pip install ffmpeg-python")
os.system("pip install moviepy")
import cv2
import paddlehub as hub
import gradio as gr
import torch
from PIL import Image, ImageOps
import numpy as np
import imageio
from moviepy.editor import *
os.mkdir("data")
os.rename("best.ckpt", "models/best.ckpt")
os.mkdir("dataout")
def get_frames(video_in):
frames = []
#resize the video
clip = VideoFileClip(video_in)
#check fps
if clip.fps > 30:
print("vide rate is over 30, resetting to 30")
clip_resized = clip.resize(height=256)
clip_resized.write_videofile("video_resized.mp4", fps=30)
else:
print("video rate is OK")
clip_resized = clip.resize(height=256)
clip_resized.write_videofile("video_resized.mp4", fps=clip.fps)
print("video resized to 512 height")
# Opens the Video file with CV2
cap= cv2.VideoCapture("video_resized.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
print("video fps: " + str(fps))
i=0
while(cap.isOpened()):
ret, frame = cap.read()
if ret == False:
break
cv2.imwrite('kang'+str(i)+'.jpg',frame)
frames.append('kang'+str(i)+'.jpg')
i+=1
cap.release()
cv2.destroyAllWindows()
print("broke the video into frames")
return frames, fps
def create_video(frames, fps, type):
print("building video result")
clip = ImageSequenceClip(frames, fps=fps)
clip.write_videofile(type + "_result.mp4", fps=fps)
return type + "_result.mp4"
def magic_lama(img):
i = img
img = Image.open(img)
mask = Image.open("./masks/modelscope-mask.png")
inverted_mask = ImageOps.invert(mask)
imageio.imwrite(f"./data/data.png", img)
imageio.imwrite(f"./data/data_mask.png", inverted_mask)
os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
return f"./dataout/data_mask.png"
def infer(video_in):
# 1. break video into frames and get FPS
break_vid = get_frames(video_in)
frames_list= break_vid[0]
fps = break_vid[1]
#n_frame = int(trim_value*fps)
n_frame = len(frames_list)
if n_frame >= len(frames_list):
print("video is shorter than the cut value")
n_frame = len(frames_list)
# 2. prepare frames result arrays
result_frames = []
print("set stop frames to: " + str(n_frame))
for i in frames_list[0:int(n_frame)]:
lama_frame = magic_lama(i)
lama_frame = Image.open(lama_frame)
imageio.imwrite(f"cleaned_frame_{i}", lama_frame)
result_frames.append(f"cleaned_frame_{i}")
print("frame " + i + "/" + str(n_frame) + ": done;")
final_vid = create_video(result_frames, fps, "cleaned")
files = [final_vid]
return final_vid
inputs = [gr.Video(label="Input", source="upload", type="filepath")]
outputs = [gr.Video(label="output")]
title = "LaMa Video Watermark Remover"
description = "<p style='text-align: center'>LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. <br />This demo in meant to be used as a watermark remover on Modelscope generated videos. <br />Simply upload your modelscope video and hit Submit</p>"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.07161' target='_blank'>Resolution-robust Large Mask Inpainting with Fourier Convolutions</a> | <a href='https://github.com/saic-mdal/lama' target='_blank'>Github Repo</a></p>"
examples = ["./examples/modelscope-astronaut-horse.mp4", "./examples/modelscope-panda.mp4", "./examples/modelscope-spiderman-surfing.mp4"]
gr.Interface(infer, inputs, outputs, title=title,
description=description, article=article, examples=examples).launch()
|