Spaces:
Running
on
L40S
Running
on
L40S
File size: 30,776 Bytes
e462867 46e54d8 e462867 46e54d8 e462867 46e54d8 e462867 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import os
import sys
import gc
import math
import time
import random
import types
import logging
import traceback
from contextlib import contextmanager
from functools import partial
from PIL import Image
import torchvision.transforms.functional as TF
import torch
import torch.nn.functional as F
import torch.amp as amp
import torch.distributed as dist
import torch.multiprocessing as mp
from tqdm import tqdm
from .text2video import (WanT2V, T5EncoderModel, WanVAE, shard_model, FlowDPMSolverMultistepScheduler,
get_sampling_sigmas, retrieve_timesteps, FlowUniPCMultistepScheduler)
from .modules.vace_model import VaceWanModel
from .utils.vace_processor import VaceVideoProcessor
class WanVace(WanT2V):
def __init__(
self,
config,
checkpoint_dir,
device_id=0,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_usp=False,
t5_cpu=False,
):
r"""
Initializes the Wan text-to-video generation model components.
Args:
config (EasyDict):
Object containing model parameters initialized from config.py
checkpoint_dir (`str`):
Path to directory containing model checkpoints
device_id (`int`, *optional*, defaults to 0):
Id of target GPU device
rank (`int`, *optional*, defaults to 0):
Process rank for distributed training
t5_fsdp (`bool`, *optional*, defaults to False):
Enable FSDP sharding for T5 model
dit_fsdp (`bool`, *optional*, defaults to False):
Enable FSDP sharding for DiT model
use_usp (`bool`, *optional*, defaults to False):
Enable distribution strategy of USP.
t5_cpu (`bool`, *optional*, defaults to False):
Whether to place T5 model on CPU. Only works without t5_fsdp.
"""
self.device = torch.device(f"cuda:{device_id}")
self.config = config
self.rank = rank
self.t5_cpu = t5_cpu
self.num_train_timesteps = config.num_train_timesteps
self.param_dtype = config.param_dtype
shard_fn = partial(shard_model, device_id=device_id)
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
shard_fn=shard_fn if t5_fsdp else None)
self.vae_stride = config.vae_stride
self.patch_size = config.patch_size
self.vae = WanVAE(
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
device=self.device)
logging.info(f"Creating VaceWanModel from {checkpoint_dir}")
self.model = VaceWanModel.from_pretrained(checkpoint_dir)
self.model.eval().requires_grad_(False)
if use_usp:
from xfuser.core.distributed import \
get_sequence_parallel_world_size
from .distributed.xdit_context_parallel import (usp_attn_forward,
usp_dit_forward,
usp_dit_forward_vace)
for block in self.model.blocks:
block.self_attn.forward = types.MethodType(
usp_attn_forward, block.self_attn)
for block in self.model.vace_blocks:
block.self_attn.forward = types.MethodType(
usp_attn_forward, block.self_attn)
self.model.forward = types.MethodType(usp_dit_forward, self.model)
self.model.forward_vace = types.MethodType(usp_dit_forward_vace, self.model)
self.sp_size = get_sequence_parallel_world_size()
else:
self.sp_size = 1
if dist.is_initialized():
dist.barrier()
if dit_fsdp:
self.model = shard_fn(self.model)
else:
self.model.to(self.device)
self.sample_neg_prompt = config.sample_neg_prompt
self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
min_area=720*1280,
max_area=720*1280,
min_fps=config.sample_fps,
max_fps=config.sample_fps,
zero_start=True,
seq_len=75600,
keep_last=True)
def vace_encode_frames(self, frames, ref_images, masks=None, vae=None):
vae = self.vae if vae is None else vae
if ref_images is None:
ref_images = [None] * len(frames)
else:
assert len(frames) == len(ref_images)
if masks is None:
latents = vae.encode(frames)
else:
masks = [torch.where(m > 0.5, 1.0, 0.0) for m in masks]
inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
inactive = vae.encode(inactive)
reactive = vae.encode(reactive)
latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]
cat_latents = []
for latent, refs in zip(latents, ref_images):
if refs is not None:
if masks is None:
ref_latent = vae.encode(refs)
else:
ref_latent = vae.encode(refs)
ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
assert all([x.shape[1] == 1 for x in ref_latent])
latent = torch.cat([*ref_latent, latent], dim=1)
cat_latents.append(latent)
return cat_latents
def vace_encode_masks(self, masks, ref_images=None, vae_stride=None):
vae_stride = self.vae_stride if vae_stride is None else vae_stride
if ref_images is None:
ref_images = [None] * len(masks)
else:
assert len(masks) == len(ref_images)
result_masks = []
for mask, refs in zip(masks, ref_images):
c, depth, height, width = mask.shape
new_depth = int((depth + 3) // vae_stride[0])
height = 2 * (int(height) // (vae_stride[1] * 2))
width = 2 * (int(width) // (vae_stride[2] * 2))
# reshape
mask = mask[0, :, :, :]
mask = mask.view(
depth, height, vae_stride[1], width, vae_stride[1]
) # depth, height, 8, width, 8
mask = mask.permute(2, 4, 0, 1, 3) # 8, 8, depth, height, width
mask = mask.reshape(
vae_stride[1] * vae_stride[2], depth, height, width
) # 8*8, depth, height, width
# interpolation
mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)
if refs is not None:
length = len(refs)
mask_pad = torch.zeros_like(mask[:, :length, :, :])
mask = torch.cat((mask_pad, mask), dim=1)
result_masks.append(mask)
return result_masks
def vace_latent(self, z, m):
return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
def prepare_source(self, src_video, src_mask, src_ref_images, num_frames, image_size, device):
area = image_size[0] * image_size[1]
self.vid_proc.set_area(area)
if area == 720*1280:
self.vid_proc.set_seq_len(75600)
elif area == 480*832:
self.vid_proc.set_seq_len(32760)
else:
raise NotImplementedError(f'image_size {image_size} is not supported')
image_size = (image_size[1], image_size[0])
image_sizes = []
for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
if sub_src_mask is not None and sub_src_video is not None:
src_video[i], src_mask[i], _, _, _ = self.vid_proc.load_video_pair(sub_src_video, sub_src_mask)
src_video[i] = src_video[i].to(device)
src_mask[i] = src_mask[i].to(device)
src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
image_sizes.append(src_video[i].shape[2:])
elif sub_src_video is None:
src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
src_mask[i] = torch.ones_like(src_video[i], device=device)
image_sizes.append(image_size)
else:
src_video[i], _, _, _ = self.vid_proc.load_video(sub_src_video)
src_video[i] = src_video[i].to(device)
src_mask[i] = torch.ones_like(src_video[i], device=device)
image_sizes.append(src_video[i].shape[2:])
for i, ref_images in enumerate(src_ref_images):
if ref_images is not None:
image_size = image_sizes[i]
for j, ref_img in enumerate(ref_images):
if ref_img is not None:
ref_img = Image.open(ref_img).convert("RGB")
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
if ref_img.shape[-2:] != image_size:
canvas_height, canvas_width = image_size
ref_height, ref_width = ref_img.shape[-2:]
white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
scale = min(canvas_height / ref_height, canvas_width / ref_width)
new_height = int(ref_height * scale)
new_width = int(ref_width * scale)
resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
top = (canvas_height - new_height) // 2
left = (canvas_width - new_width) // 2
white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
ref_img = white_canvas
src_ref_images[i][j] = ref_img.to(device)
return src_video, src_mask, src_ref_images
def decode_latent(self, zs, ref_images=None, vae=None):
vae = self.vae if vae is None else vae
if ref_images is None:
ref_images = [None] * len(zs)
else:
assert len(zs) == len(ref_images)
trimed_zs = []
for z, refs in zip(zs, ref_images):
if refs is not None:
z = z[:, len(refs):, :, :]
trimed_zs.append(z)
return vae.decode(trimed_zs)
def generate(self,
input_prompt,
input_frames,
input_masks,
input_ref_images,
size=(1280, 720),
frame_num=81,
context_scale=1.0,
shift=5.0,
sample_solver='unipc',
sampling_steps=50,
guide_scale=5.0,
n_prompt="",
seed=-1,
offload_model=True):
r"""
Generates video frames from text prompt using diffusion process.
Args:
input_prompt (`str`):
Text prompt for content generation
size (tupele[`int`], *optional*, defaults to (1280,720)):
Controls video resolution, (width,height).
frame_num (`int`, *optional*, defaults to 81):
How many frames to sample from a video. The number should be 4n+1
shift (`float`, *optional*, defaults to 5.0):
Noise schedule shift parameter. Affects temporal dynamics
sample_solver (`str`, *optional*, defaults to 'unipc'):
Solver used to sample the video.
sampling_steps (`int`, *optional*, defaults to 40):
Number of diffusion sampling steps. Higher values improve quality but slow generation
guide_scale (`float`, *optional*, defaults 5.0):
Classifier-free guidance scale. Controls prompt adherence vs. creativity
n_prompt (`str`, *optional*, defaults to ""):
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
seed (`int`, *optional*, defaults to -1):
Random seed for noise generation. If -1, use random seed.
offload_model (`bool`, *optional*, defaults to True):
If True, offloads models to CPU during generation to save VRAM
Returns:
torch.Tensor:
Generated video frames tensor. Dimensions: (C, N H, W) where:
- C: Color channels (3 for RGB)
- N: Number of frames (81)
- H: Frame height (from size)
- W: Frame width from size)
"""
# preprocess
# F = frame_num
# target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
# size[1] // self.vae_stride[1],
# size[0] // self.vae_stride[2])
#
# seq_len = math.ceil((target_shape[2] * target_shape[3]) /
# (self.patch_size[1] * self.patch_size[2]) *
# target_shape[1] / self.sp_size) * self.sp_size
if n_prompt == "":
n_prompt = self.sample_neg_prompt
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
seed_g = torch.Generator(device=self.device)
seed_g.manual_seed(seed)
if not self.t5_cpu:
self.text_encoder.model.to(self.device)
context = self.text_encoder([input_prompt], self.device)
context_null = self.text_encoder([n_prompt], self.device)
if offload_model:
self.text_encoder.model.cpu()
else:
context = self.text_encoder([input_prompt], torch.device('cpu'))
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
context = [t.to(self.device) for t in context]
context_null = [t.to(self.device) for t in context_null]
# vace context encode
z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks)
m0 = self.vace_encode_masks(input_masks, input_ref_images)
z = self.vace_latent(z0, m0)
target_shape = list(z0[0].shape)
target_shape[0] = int(target_shape[0] / 2)
noise = [
torch.randn(
target_shape[0],
target_shape[1],
target_shape[2],
target_shape[3],
dtype=torch.float32,
device=self.device,
generator=seed_g)
]
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
(self.patch_size[1] * self.patch_size[2]) *
target_shape[1] / self.sp_size) * self.sp_size
@contextmanager
def noop_no_sync():
yield
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
# evaluation mode
with amp.autocast("cuda", dtype=self.param_dtype), torch.no_grad(), no_sync():
if sample_solver == 'unipc':
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=self.num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sample_scheduler.set_timesteps(
sampling_steps, device=self.device, shift=shift)
timesteps = sample_scheduler.timesteps
elif sample_solver == 'dpm++':
sample_scheduler = FlowDPMSolverMultistepScheduler(
num_train_timesteps=self.num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
timesteps, _ = retrieve_timesteps(
sample_scheduler,
device=self.device,
sigmas=sampling_sigmas)
else:
raise NotImplementedError("Unsupported solver.")
# sample videos
latents = noise
arg_c = {'context': context, 'seq_len': seq_len}
arg_null = {'context': context_null, 'seq_len': seq_len}
for _, t in enumerate(tqdm(timesteps)):
latent_model_input = latents
timestep = [t]
timestep = torch.stack(timestep)
self.model.to(self.device)
noise_pred_cond = self.model(
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale, **arg_c)[0]
noise_pred_uncond = self.model(
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale,**arg_null)[0]
noise_pred = noise_pred_uncond + guide_scale * (
noise_pred_cond - noise_pred_uncond)
temp_x0 = sample_scheduler.step(
noise_pred.unsqueeze(0),
t,
latents[0].unsqueeze(0),
return_dict=False,
generator=seed_g)[0]
latents = [temp_x0.squeeze(0)]
x0 = latents
if offload_model:
self.model.cpu()
torch.cuda.empty_cache()
if self.rank == 0:
videos = self.decode_latent(x0, input_ref_images)
del noise, latents
del sample_scheduler
if offload_model:
gc.collect()
torch.cuda.synchronize()
if dist.is_initialized():
dist.barrier()
return videos[0] if self.rank == 0 else None
class WanVaceMP(WanVace):
def __init__(
self,
config,
checkpoint_dir,
use_usp=False,
ulysses_size=None,
ring_size=None
):
self.config = config
self.checkpoint_dir = checkpoint_dir
self.use_usp = use_usp
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12345'
os.environ['RANK'] = '0'
os.environ['WORLD_SIZE'] = '1'
self.in_q_list = None
self.out_q = None
self.inference_pids = None
self.ulysses_size = ulysses_size
self.ring_size = ring_size
self.dynamic_load()
self.device = 'cpu' if torch.cuda.is_available() else 'cpu'
self.vid_proc = VaceVideoProcessor(
downsample=tuple([x * y for x, y in zip(config.vae_stride, config.patch_size)]),
min_area=480 * 832,
max_area=480 * 832,
min_fps=self.config.sample_fps,
max_fps=self.config.sample_fps,
zero_start=True,
seq_len=32760,
keep_last=True)
def dynamic_load(self):
if hasattr(self, 'inference_pids') and self.inference_pids is not None:
return
gpu_infer = os.environ.get('LOCAL_WORLD_SIZE') or torch.cuda.device_count()
pmi_rank = int(os.environ['RANK'])
pmi_world_size = int(os.environ['WORLD_SIZE'])
in_q_list = [torch.multiprocessing.Manager().Queue() for _ in range(gpu_infer)]
out_q = torch.multiprocessing.Manager().Queue()
initialized_events = [torch.multiprocessing.Manager().Event() for _ in range(gpu_infer)]
context = mp.spawn(self.mp_worker, nprocs=gpu_infer, args=(gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q, initialized_events, self), join=False)
all_initialized = False
while not all_initialized:
all_initialized = all(event.is_set() for event in initialized_events)
if not all_initialized:
time.sleep(0.1)
print('Inference model is initialized', flush=True)
self.in_q_list = in_q_list
self.out_q = out_q
self.inference_pids = context.pids()
self.initialized_events = initialized_events
def transfer_data_to_cuda(self, data, device):
if data is None:
return None
else:
if isinstance(data, torch.Tensor):
data = data.to(device)
elif isinstance(data, list):
data = [self.transfer_data_to_cuda(subdata, device) for subdata in data]
elif isinstance(data, dict):
data = {key: self.transfer_data_to_cuda(val, device) for key, val in data.items()}
return data
def mp_worker(self, gpu, gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q, initialized_events, work_env):
try:
world_size = pmi_world_size * gpu_infer
rank = pmi_rank * gpu_infer + gpu
print("world_size", world_size, "rank", rank, flush=True)
torch.cuda.set_device(gpu)
dist.init_process_group(
backend='nccl',
init_method='env://',
rank=rank,
world_size=world_size
)
from xfuser.core.distributed import (initialize_model_parallel,
init_distributed_environment)
init_distributed_environment(
rank=dist.get_rank(), world_size=dist.get_world_size())
initialize_model_parallel(
sequence_parallel_degree=dist.get_world_size(),
ring_degree=self.ring_size or 1,
ulysses_degree=self.ulysses_size or 1
)
num_train_timesteps = self.config.num_train_timesteps
param_dtype = self.config.param_dtype
shard_fn = partial(shard_model, device_id=gpu)
text_encoder = T5EncoderModel(
text_len=self.config.text_len,
dtype=self.config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=os.path.join(self.checkpoint_dir, self.config.t5_checkpoint),
tokenizer_path=os.path.join(self.checkpoint_dir, self.config.t5_tokenizer),
shard_fn=shard_fn if True else None)
text_encoder.model.to(gpu)
vae_stride = self.config.vae_stride
patch_size = self.config.patch_size
vae = WanVAE(
vae_pth=os.path.join(self.checkpoint_dir, self.config.vae_checkpoint),
device=gpu)
logging.info(f"Creating VaceWanModel from {self.checkpoint_dir}")
model = VaceWanModel.from_pretrained(self.checkpoint_dir)
model.eval().requires_grad_(False)
if self.use_usp:
from xfuser.core.distributed import get_sequence_parallel_world_size
from .distributed.xdit_context_parallel import (usp_attn_forward,
usp_dit_forward,
usp_dit_forward_vace)
for block in model.blocks:
block.self_attn.forward = types.MethodType(
usp_attn_forward, block.self_attn)
for block in model.vace_blocks:
block.self_attn.forward = types.MethodType(
usp_attn_forward, block.self_attn)
model.forward = types.MethodType(usp_dit_forward, model)
model.forward_vace = types.MethodType(usp_dit_forward_vace, model)
sp_size = get_sequence_parallel_world_size()
else:
sp_size = 1
dist.barrier()
model = shard_fn(model)
sample_neg_prompt = self.config.sample_neg_prompt
torch.cuda.empty_cache()
event = initialized_events[gpu]
in_q = in_q_list[gpu]
event.set()
while True:
item = in_q.get()
input_prompt, input_frames, input_masks, input_ref_images, size, frame_num, context_scale, \
shift, sample_solver, sampling_steps, guide_scale, n_prompt, seed, offload_model = item
input_frames = self.transfer_data_to_cuda(input_frames, gpu)
input_masks = self.transfer_data_to_cuda(input_masks, gpu)
input_ref_images = self.transfer_data_to_cuda(input_ref_images, gpu)
if n_prompt == "":
n_prompt = sample_neg_prompt
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
seed_g = torch.Generator(device=gpu)
seed_g.manual_seed(seed)
context = text_encoder([input_prompt], gpu)
context_null = text_encoder([n_prompt], gpu)
# vace context encode
z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, vae=vae)
m0 = self.vace_encode_masks(input_masks, input_ref_images, vae_stride=vae_stride)
z = self.vace_latent(z0, m0)
target_shape = list(z0[0].shape)
target_shape[0] = int(target_shape[0] / 2)
noise = [
torch.randn(
target_shape[0],
target_shape[1],
target_shape[2],
target_shape[3],
dtype=torch.float32,
device=gpu,
generator=seed_g)
]
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
(patch_size[1] * patch_size[2]) *
target_shape[1] / sp_size) * sp_size
@contextmanager
def noop_no_sync():
yield
no_sync = getattr(model, 'no_sync', noop_no_sync)
# evaluation mode
with amp.autocast("cuda", dtype=param_dtype), torch.no_grad(), no_sync():
if sample_solver == 'unipc':
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sample_scheduler.set_timesteps(
sampling_steps, device=gpu, shift=shift)
timesteps = sample_scheduler.timesteps
elif sample_solver == 'dpm++':
sample_scheduler = FlowDPMSolverMultistepScheduler(
num_train_timesteps=num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
timesteps, _ = retrieve_timesteps(
sample_scheduler,
device=gpu,
sigmas=sampling_sigmas)
else:
raise NotImplementedError("Unsupported solver.")
# sample videos
latents = noise
arg_c = {'context': context, 'seq_len': seq_len}
arg_null = {'context': context_null, 'seq_len': seq_len}
for _, t in enumerate(tqdm(timesteps)):
latent_model_input = latents
timestep = [t]
timestep = torch.stack(timestep)
model.to(gpu)
noise_pred_cond = model(
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale, **arg_c)[
0]
noise_pred_uncond = model(
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale,
**arg_null)[0]
noise_pred = noise_pred_uncond + guide_scale * (
noise_pred_cond - noise_pred_uncond)
temp_x0 = sample_scheduler.step(
noise_pred.unsqueeze(0),
t,
latents[0].unsqueeze(0),
return_dict=False,
generator=seed_g)[0]
latents = [temp_x0.squeeze(0)]
torch.cuda.empty_cache()
x0 = latents
if rank == 0:
videos = self.decode_latent(x0, input_ref_images, vae=vae)
del noise, latents
del sample_scheduler
if offload_model:
gc.collect()
torch.cuda.synchronize()
if dist.is_initialized():
dist.barrier()
if rank == 0:
out_q.put(videos[0].cpu())
except Exception as e:
trace_info = traceback.format_exc()
print(trace_info, flush=True)
print(e, flush=True)
def generate(self,
input_prompt,
input_frames,
input_masks,
input_ref_images,
size=(1280, 720),
frame_num=81,
context_scale=1.0,
shift=5.0,
sample_solver='unipc',
sampling_steps=50,
guide_scale=5.0,
n_prompt="",
seed=-1,
offload_model=True):
input_data = (input_prompt, input_frames, input_masks, input_ref_images, size, frame_num, context_scale,
shift, sample_solver, sampling_steps, guide_scale, n_prompt, seed, offload_model)
for in_q in self.in_q_list:
in_q.put(input_data)
value_output = self.out_q.get()
return value_output
|