|
import torch |
|
from torch import nn |
|
from torch.nn import Parameter |
|
from torch.autograd import Variable |
|
from torch.nn import functional as F |
|
|
|
|
|
def l2normalize(v, eps=1e-12): |
|
return v / (v.norm() + eps) |
|
|
|
|
|
class SpectralNorm(nn.Module): |
|
""" |
|
Based on https://github.com/heykeetae/Self-Attention-GAN/blob/master/spectral.py |
|
and add _noupdate_u_v() for evaluation |
|
""" |
|
def __init__(self, module, name='weight', power_iterations=1): |
|
super(SpectralNorm, self).__init__() |
|
self.module = module |
|
self.name = name |
|
self.power_iterations = power_iterations |
|
if not self._made_params(): |
|
self._make_params() |
|
|
|
def _update_u_v(self): |
|
u = getattr(self.module, self.name + "_u") |
|
v = getattr(self.module, self.name + "_v") |
|
w = getattr(self.module, self.name + "_bar") |
|
|
|
height = w.data.shape[0] |
|
for _ in range(self.power_iterations): |
|
v.data = l2normalize(torch.mv(torch.t(w.view(height,-1).data), u.data)) |
|
u.data = l2normalize(torch.mv(w.view(height,-1).data, v.data)) |
|
|
|
sigma = u.dot(w.view(height, -1).mv(v)) |
|
setattr(self.module, self.name, w / sigma.expand_as(w)) |
|
|
|
def _noupdate_u_v(self): |
|
u = getattr(self.module, self.name + "_u") |
|
v = getattr(self.module, self.name + "_v") |
|
w = getattr(self.module, self.name + "_bar") |
|
|
|
height = w.data.shape[0] |
|
sigma = u.dot(w.view(height, -1).mv(v)) |
|
setattr(self.module, self.name, w / sigma.expand_as(w)) |
|
|
|
def _made_params(self): |
|
try: |
|
u = getattr(self.module, self.name + "_u") |
|
v = getattr(self.module, self.name + "_v") |
|
w = getattr(self.module, self.name + "_bar") |
|
return True |
|
except AttributeError: |
|
return False |
|
|
|
def _make_params(self): |
|
w = getattr(self.module, self.name) |
|
|
|
height = w.data.shape[0] |
|
width = w.view(height, -1).data.shape[1] |
|
|
|
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) |
|
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) |
|
u.data = l2normalize(u.data) |
|
v.data = l2normalize(v.data) |
|
w_bar = Parameter(w.data) |
|
|
|
del self.module._parameters[self.name] |
|
|
|
self.module.register_parameter(self.name + "_u", u) |
|
self.module.register_parameter(self.name + "_v", v) |
|
self.module.register_parameter(self.name + "_bar", w_bar) |
|
|
|
def forward(self, *args): |
|
|
|
if self.module.training: |
|
self._update_u_v() |
|
else: |
|
self._noupdate_u_v() |
|
return self.module.forward(*args) |
|
|
|
|
|
class ASPP(nn.Module): |
|
''' |
|
based on https://github.com/chenxi116/DeepLabv3.pytorch/blob/master/deeplab.py |
|
''' |
|
def __init__(self, in_channel, out_channel, conv=nn.Conv2d, norm=nn.BatchNorm2d): |
|
super(ASPP, self).__init__() |
|
mid_channel = 256 |
|
dilations = [1, 2, 4, 8] |
|
|
|
self.global_pooling = nn.AdaptiveAvgPool2d(1) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.aspp1 = conv(in_channel, mid_channel, kernel_size=1, stride=1, dilation=dilations[0], bias=False) |
|
self.aspp2 = conv(in_channel, mid_channel, kernel_size=3, stride=1, |
|
dilation=dilations[1], padding=dilations[1], |
|
bias=False) |
|
self.aspp3 = conv(in_channel, mid_channel, kernel_size=3, stride=1, |
|
dilation=dilations[2], padding=dilations[2], |
|
bias=False) |
|
self.aspp4 = conv(in_channel, mid_channel, kernel_size=3, stride=1, |
|
dilation=dilations[3], padding=dilations[3], |
|
bias=False) |
|
self.aspp5 = conv(in_channel, mid_channel, kernel_size=1, stride=1, bias=False) |
|
self.aspp1_bn = norm(mid_channel) |
|
self.aspp2_bn = norm(mid_channel) |
|
self.aspp3_bn = norm(mid_channel) |
|
self.aspp4_bn = norm(mid_channel) |
|
self.aspp5_bn = norm(mid_channel) |
|
self.conv2 = conv(mid_channel * 5, out_channel, kernel_size=1, stride=1, |
|
bias=False) |
|
self.bn2 = norm(out_channel) |
|
|
|
def forward(self, x): |
|
x1 = self.aspp1(x) |
|
x1 = self.aspp1_bn(x1) |
|
x1 = self.relu(x1) |
|
x2 = self.aspp2(x) |
|
x2 = self.aspp2_bn(x2) |
|
x2 = self.relu(x2) |
|
x3 = self.aspp3(x) |
|
x3 = self.aspp3_bn(x3) |
|
x3 = self.relu(x3) |
|
x4 = self.aspp4(x) |
|
x4 = self.aspp4_bn(x4) |
|
x4 = self.relu(x4) |
|
x5 = self.global_pooling(x) |
|
x5 = self.aspp5(x5) |
|
x5 = self.aspp5_bn(x5) |
|
x5 = self.relu(x5) |
|
x5 = nn.Upsample((x.shape[2], x.shape[3]), mode='nearest')(x5) |
|
x = torch.cat((x1, x2, x3, x4, x5), 1) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.relu(x) |
|
return x |