import torch from torch import nn from torch.nn import Parameter from torch.autograd import Variable from torch.nn import functional as F def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class SpectralNorm(nn.Module): """ Based on https://github.com/heykeetae/Self-Attention-GAN/blob/master/spectral.py and add _noupdate_u_v() for evaluation """ def __init__(self, module, name='weight', power_iterations=1): super(SpectralNorm, self).__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + "_u") v = getattr(self.module, self.name + "_v") w = getattr(self.module, self.name + "_bar") height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height,-1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height,-1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _noupdate_u_v(self): u = getattr(self.module, self.name + "_u") v = getattr(self.module, self.name + "_v") w = getattr(self.module, self.name + "_bar") height = w.data.shape[0] sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: u = getattr(self.module, self.name + "_u") v = getattr(self.module, self.name + "_v") w = getattr(self.module, self.name + "_bar") return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + "_u", u) self.module.register_parameter(self.name + "_v", v) self.module.register_parameter(self.name + "_bar", w_bar) def forward(self, *args): # if torch.is_grad_enabled() and self.module.training: if self.module.training: self._update_u_v() else: self._noupdate_u_v() return self.module.forward(*args) class ASPP(nn.Module): ''' based on https://github.com/chenxi116/DeepLabv3.pytorch/blob/master/deeplab.py ''' def __init__(self, in_channel, out_channel, conv=nn.Conv2d, norm=nn.BatchNorm2d): super(ASPP, self).__init__() mid_channel = 256 dilations = [1, 2, 4, 8] self.global_pooling = nn.AdaptiveAvgPool2d(1) self.relu = nn.ReLU(inplace=True) self.aspp1 = conv(in_channel, mid_channel, kernel_size=1, stride=1, dilation=dilations[0], bias=False) self.aspp2 = conv(in_channel, mid_channel, kernel_size=3, stride=1, dilation=dilations[1], padding=dilations[1], bias=False) self.aspp3 = conv(in_channel, mid_channel, kernel_size=3, stride=1, dilation=dilations[2], padding=dilations[2], bias=False) self.aspp4 = conv(in_channel, mid_channel, kernel_size=3, stride=1, dilation=dilations[3], padding=dilations[3], bias=False) self.aspp5 = conv(in_channel, mid_channel, kernel_size=1, stride=1, bias=False) self.aspp1_bn = norm(mid_channel) self.aspp2_bn = norm(mid_channel) self.aspp3_bn = norm(mid_channel) self.aspp4_bn = norm(mid_channel) self.aspp5_bn = norm(mid_channel) self.conv2 = conv(mid_channel * 5, out_channel, kernel_size=1, stride=1, bias=False) self.bn2 = norm(out_channel) def forward(self, x): x1 = self.aspp1(x) x1 = self.aspp1_bn(x1) x1 = self.relu(x1) x2 = self.aspp2(x) x2 = self.aspp2_bn(x2) x2 = self.relu(x2) x3 = self.aspp3(x) x3 = self.aspp3_bn(x3) x3 = self.relu(x3) x4 = self.aspp4(x) x4 = self.aspp4_bn(x4) x4 = self.relu(x4) x5 = self.global_pooling(x) x5 = self.aspp5(x5) x5 = self.aspp5_bn(x5) x5 = self.relu(x5) x5 = nn.Upsample((x.shape[2], x.shape[3]), mode='nearest')(x5) x = torch.cat((x1, x2, x3, x4, x5), 1) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) return x