File size: 4,983 Bytes
31757cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
from   torch import nn
from   torch.nn import Parameter
from   torch.autograd import Variable
from   torch.nn import functional as F


def l2normalize(v, eps=1e-12):
    return v / (v.norm() + eps)


class SpectralNorm(nn.Module):
    """
    Based on https://github.com/heykeetae/Self-Attention-GAN/blob/master/spectral.py
    and add _noupdate_u_v() for evaluation
    """
    def __init__(self, module, name='weight', power_iterations=1):
        super(SpectralNorm, self).__init__()
        self.module = module
        self.name = name
        self.power_iterations = power_iterations
        if not self._made_params():
            self._make_params()

    def _update_u_v(self):
        u = getattr(self.module, self.name + "_u")
        v = getattr(self.module, self.name + "_v")
        w = getattr(self.module, self.name + "_bar")

        height = w.data.shape[0]
        for _ in range(self.power_iterations):
            v.data = l2normalize(torch.mv(torch.t(w.view(height,-1).data), u.data))
            u.data = l2normalize(torch.mv(w.view(height,-1).data, v.data))

        sigma = u.dot(w.view(height, -1).mv(v))
        setattr(self.module, self.name, w / sigma.expand_as(w))

    def _noupdate_u_v(self):
        u = getattr(self.module, self.name + "_u")
        v = getattr(self.module, self.name + "_v")
        w = getattr(self.module, self.name + "_bar")

        height = w.data.shape[0]
        sigma = u.dot(w.view(height, -1).mv(v))
        setattr(self.module, self.name, w / sigma.expand_as(w))

    def _made_params(self):
        try:
            u = getattr(self.module, self.name + "_u")
            v = getattr(self.module, self.name + "_v")
            w = getattr(self.module, self.name + "_bar")
            return True
        except AttributeError:
            return False

    def _make_params(self):
        w = getattr(self.module, self.name)

        height = w.data.shape[0]
        width = w.view(height, -1).data.shape[1]

        u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
        v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
        u.data = l2normalize(u.data)
        v.data = l2normalize(v.data)
        w_bar = Parameter(w.data)

        del self.module._parameters[self.name]

        self.module.register_parameter(self.name + "_u", u)
        self.module.register_parameter(self.name + "_v", v)
        self.module.register_parameter(self.name + "_bar", w_bar)

    def forward(self, *args):
        # if torch.is_grad_enabled() and self.module.training:
        if self.module.training:
            self._update_u_v()
        else:
            self._noupdate_u_v()
        return self.module.forward(*args)


class ASPP(nn.Module):
    '''
    based on https://github.com/chenxi116/DeepLabv3.pytorch/blob/master/deeplab.py
    '''
    def __init__(self, in_channel, out_channel, conv=nn.Conv2d, norm=nn.BatchNorm2d):
        super(ASPP, self).__init__()
        mid_channel = 256
        dilations = [1, 2, 4, 8]

        self.global_pooling = nn.AdaptiveAvgPool2d(1)
        self.relu = nn.ReLU(inplace=True)
        self.aspp1 = conv(in_channel, mid_channel, kernel_size=1, stride=1, dilation=dilations[0], bias=False)
        self.aspp2 = conv(in_channel, mid_channel, kernel_size=3, stride=1,
                               dilation=dilations[1], padding=dilations[1],
                               bias=False)
        self.aspp3 = conv(in_channel, mid_channel, kernel_size=3, stride=1,
                               dilation=dilations[2], padding=dilations[2],
                               bias=False)
        self.aspp4 = conv(in_channel, mid_channel, kernel_size=3, stride=1,
                               dilation=dilations[3], padding=dilations[3],
                               bias=False)
        self.aspp5 = conv(in_channel, mid_channel, kernel_size=1, stride=1, bias=False)
        self.aspp1_bn = norm(mid_channel)
        self.aspp2_bn = norm(mid_channel)
        self.aspp3_bn = norm(mid_channel)
        self.aspp4_bn = norm(mid_channel)
        self.aspp5_bn = norm(mid_channel)
        self.conv2 = conv(mid_channel * 5, out_channel, kernel_size=1, stride=1,
                               bias=False)
        self.bn2 = norm(out_channel)

    def forward(self, x):
        x1 = self.aspp1(x)
        x1 = self.aspp1_bn(x1)
        x1 = self.relu(x1)
        x2 = self.aspp2(x)
        x2 = self.aspp2_bn(x2)
        x2 = self.relu(x2)
        x3 = self.aspp3(x)
        x3 = self.aspp3_bn(x3)
        x3 = self.relu(x3)
        x4 = self.aspp4(x)
        x4 = self.aspp4_bn(x4)
        x4 = self.relu(x4)
        x5 = self.global_pooling(x)
        x5 = self.aspp5(x5)
        x5 = self.aspp5_bn(x5)
        x5 = self.relu(x5)
        x5 = nn.Upsample((x.shape[2], x.shape[3]), mode='nearest')(x5)
        x = torch.cat((x1, x2, x3, x4, x5), 1)
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)
        return x