Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,574 Bytes
2d87298 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
{
"cells": [
{
"cell_type": "markdown",
"id": "a885cf5d-c525-4f5b-a8e4-f67d2f699909",
"metadata": {},
"source": [
"## Copyright 2023 Google LLC"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d891d022-8979-40d4-848f-ecb84c17f12c",
"metadata": {
"jp-MarkdownHeadingCollapsed": true
},
"outputs": [],
"source": [
"# Copyright 2023 Google LLC\n",
"#\n",
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"# you may not use this file except in compliance with the License.\n",
"# You may obtain a copy of the License at\n",
"#\n",
"# http://www.apache.org/licenses/LICENSE-2.0\n",
"#\n",
"# Unless required by applicable law or agreed to in writing, software\n",
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"# See the License for the specific language governing permissions and\n",
"# limitations under the License."
]
},
{
"cell_type": "markdown",
"id": "540d8642-c203-471c-a66d-0d43aabb0706",
"metadata": {},
"source": [
"# StyleAligned over SDXL from input image"
]
},
{
"cell_type": "markdown",
"id": "483d0cf9",
"metadata": {},
"source": [
"#### Model Load "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "23d54ea7-f7ab-4548-9b10-ece87216dc18",
"metadata": {},
"outputs": [],
"source": [
"from diffusers import StableDiffusionXLPipeline, DDIMScheduler\n",
"import torch\n",
"import mediapy\n",
"import sa_handler\n",
"import math\n",
"\n",
"\n",
"scheduler = DDIMScheduler(\n",
" beta_start=0.00085, beta_end=0.012, beta_schedule=\"scaled_linear\",\n",
" clip_sample=False, set_alpha_to_one=False)\n",
"\n",
"pipeline = StableDiffusionXLPipeline.from_pretrained(\n",
" \"stabilityai/stable-diffusion-xl-base-1.0\", torch_dtype=torch.float16, variant=\"fp16\",\n",
" use_safetensors=True,\n",
" scheduler=scheduler\n",
").to(\"cuda\")"
]
},
{
"cell_type": "markdown",
"id": "c09b1a68",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"#### Ref image load and inversion"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f4717854",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# DDIM inversion\n",
"\n",
"from diffusers.utils import load_image\n",
"import inversion\n",
"import numpy as np\n",
"\n",
"src_style = \"medieval painting\"\n",
"src_prompt = f'Man laying in a bed, {src_style}.'\n",
"image_path = './example_image/medieval-bed.jpeg'\n",
"\n",
"num_inference_steps = 50\n",
"x0 = np.array(load_image(image_path).resize((1024, 1024)))\n",
"zts = inversion.ddim_inversion(pipeline, x0, src_prompt, num_inference_steps, 2)\n",
"mediapy.show_image(x0, title=\"innput reference image\", height=256)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1751c4fe",
"metadata": {},
"outputs": [],
"source": [
"prompts = [\n",
" src_prompt,\n",
" \"A man working on a laptop\",\n",
" \"A man eats pizza\",\n",
" \"A woman playig on saxophone\",\n",
"]\n",
"\n",
"# some parameters you can adjust to control fidelity to reference\n",
"shared_score_shift = np.log(2) # higher value induces higher fidelity, set 0 for no shift\n",
"shared_score_scale = 1.0 # higher value induces higher, set 1 for no rescale\n",
"\n",
"# for very famouse images consider supressing attention to refference, here is a configuration example:\n",
"# shared_score_shift = np.log(1)\n",
"# shared_score_scale = 0.5\n",
"\n",
"for i in range(1, len(prompts)):\n",
" prompts[i] = f'{prompts[i]}, {src_style}.'\n",
"\n",
"handler = sa_handler.Handler(pipeline)\n",
"sa_args = sa_handler.StyleAlignedArgs(\n",
" share_group_norm=True, share_layer_norm=True, share_attention=True,\n",
" adain_queries=True, adain_keys=True, adain_values=False,\n",
" shared_score_shift=shared_score_shift, shared_score_scale=shared_score_scale,)\n",
"handler.register(sa_args)\n",
"\n",
"zT, inversion_callback = inversion.make_inversion_callback(zts, offset=5)\n",
"\n",
"g_cpu = torch.Generator(device='cpu')\n",
"g_cpu.manual_seed(10)\n",
"\n",
"latents = torch.randn(len(prompts), 4, 128, 128, device='cpu', generator=g_cpu,\n",
" dtype=pipeline.unet.dtype,).to('cuda:0')\n",
"latents[0] = zT\n",
"\n",
"images_a = pipeline(prompts, latents=latents,\n",
" callback_on_step_end=inversion_callback,\n",
" num_inference_steps=num_inference_steps, guidance_scale=10.0).images\n",
"\n",
"handler.remove()\n",
"mediapy.show_images(images_a, titles=[p[:-(len(src_style) + 3)] for p in prompts])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|