File size: 5,574 Bytes
2d87298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "a885cf5d-c525-4f5b-a8e4-f67d2f699909",
   "metadata": {},
   "source": [
    "## Copyright 2023 Google LLC"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d891d022-8979-40d4-848f-ecb84c17f12c",
   "metadata": {
    "jp-MarkdownHeadingCollapsed": true
   },
   "outputs": [],
   "source": [
    "# Copyright 2023 Google LLC\n",
    "#\n",
    "# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
    "# you may not use this file except in compliance with the License.\n",
    "# You may obtain a copy of the License at\n",
    "#\n",
    "#      http://www.apache.org/licenses/LICENSE-2.0\n",
    "#\n",
    "# Unless required by applicable law or agreed to in writing, software\n",
    "# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
    "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
    "# See the License for the specific language governing permissions and\n",
    "# limitations under the License."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "540d8642-c203-471c-a66d-0d43aabb0706",
   "metadata": {},
   "source": [
    "# StyleAligned over SDXL from input image"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "483d0cf9",
   "metadata": {},
   "source": [
    "#### Model Load "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "23d54ea7-f7ab-4548-9b10-ece87216dc18",
   "metadata": {},
   "outputs": [],
   "source": [
    "from diffusers import StableDiffusionXLPipeline, DDIMScheduler\n",
    "import torch\n",
    "import mediapy\n",
    "import sa_handler\n",
    "import math\n",
    "\n",
    "\n",
    "scheduler = DDIMScheduler(\n",
    "    beta_start=0.00085, beta_end=0.012, beta_schedule=\"scaled_linear\",\n",
    "    clip_sample=False, set_alpha_to_one=False)\n",
    "\n",
    "pipeline = StableDiffusionXLPipeline.from_pretrained(\n",
    "    \"stabilityai/stable-diffusion-xl-base-1.0\", torch_dtype=torch.float16, variant=\"fp16\",\n",
    "    use_safetensors=True,\n",
    "    scheduler=scheduler\n",
    ").to(\"cuda\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c09b1a68",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "#### Ref image load and inversion"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f4717854",
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "# DDIM inversion\n",
    "\n",
    "from diffusers.utils import load_image\n",
    "import inversion\n",
    "import numpy as np\n",
    "\n",
    "src_style = \"medieval painting\"\n",
    "src_prompt = f'Man laying in a bed, {src_style}.'\n",
    "image_path = './example_image/medieval-bed.jpeg'\n",
    "\n",
    "num_inference_steps = 50\n",
    "x0 = np.array(load_image(image_path).resize((1024, 1024)))\n",
    "zts = inversion.ddim_inversion(pipeline, x0, src_prompt, num_inference_steps, 2)\n",
    "mediapy.show_image(x0, title=\"innput reference image\", height=256)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1751c4fe",
   "metadata": {},
   "outputs": [],
   "source": [
    "prompts = [\n",
    "    src_prompt,\n",
    "    \"A man working on a laptop\",\n",
    "    \"A man eats pizza\",\n",
    "    \"A woman playig on saxophone\",\n",
    "]\n",
    "\n",
    "# some parameters you can adjust to control fidelity to reference\n",
    "shared_score_shift = np.log(2)  # higher value induces higher fidelity, set 0 for no shift\n",
    "shared_score_scale = 1.0  # higher value induces higher, set 1 for no rescale\n",
    "\n",
    "# for very famouse images consider supressing attention to refference, here is a configuration example:\n",
    "# shared_score_shift = np.log(1)\n",
    "# shared_score_scale = 0.5\n",
    "\n",
    "for i in range(1, len(prompts)):\n",
    "    prompts[i] = f'{prompts[i]}, {src_style}.'\n",
    "\n",
    "handler = sa_handler.Handler(pipeline)\n",
    "sa_args = sa_handler.StyleAlignedArgs(\n",
    "    share_group_norm=True, share_layer_norm=True, share_attention=True,\n",
    "    adain_queries=True, adain_keys=True, adain_values=False,\n",
    "    shared_score_shift=shared_score_shift, shared_score_scale=shared_score_scale,)\n",
    "handler.register(sa_args)\n",
    "\n",
    "zT, inversion_callback = inversion.make_inversion_callback(zts, offset=5)\n",
    "\n",
    "g_cpu = torch.Generator(device='cpu')\n",
    "g_cpu.manual_seed(10)\n",
    "\n",
    "latents = torch.randn(len(prompts), 4, 128, 128, device='cpu', generator=g_cpu,\n",
    "                      dtype=pipeline.unet.dtype,).to('cuda:0')\n",
    "latents[0] = zT\n",
    "\n",
    "images_a = pipeline(prompts, latents=latents,\n",
    "                    callback_on_step_end=inversion_callback,\n",
    "                    num_inference_steps=num_inference_steps, guidance_scale=10.0).images\n",
    "\n",
    "handler.remove()\n",
    "mediapy.show_images(images_a, titles=[p[:-(len(src_style) + 3)] for p in prompts])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}