Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 10,212 Bytes
			
			| ca25718 dd8f929 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | import inspect
from typing import Callable, List, Optional, Union
import torch
from diffusers import StableDiffusionPipeline
def freeze_params(params):
    for param in params:
        param.requires_grad = False
class RewardStableDiffusion(StableDiffusionPipeline):
    def __init__(
        self,
        vae,
        text_encoder,
        tokenizer,
        unet,
        scheduler,
        safety_checker,
        feature_extractor,
        image_encoder=None,
        requires_safety_checker: bool = True,
        memsave=False,
    ):
        super().__init__(
            vae,
            text_encoder,
            tokenizer,
            unet,
            scheduler,
            safety_checker,
            feature_extractor,
            image_encoder,
        )
        # optionally enable memsave_torch
        if memsave:
            import memsave_torch.nn
            self.vae = memsave_torch.nn.convert_to_memory_saving(self.vae)
            self.unet = memsave_torch.nn.convert_to_memory_saving(self.unet)
            self.text_encoder = memsave_torch.nn.convert_to_memory_saving(
                self.text_encoder
            )
        # enable checkpointing
        self.text_encoder.gradient_checkpointing_enable()
        self.unet.enable_gradient_checkpointing()
        self.vae.eval()
        self.text_encoder.eval()
        self.unet.eval()
        # freeze diffusion parameters
        freeze_params(self.vae.parameters())
        freeze_params(self.unet.parameters())
        freeze_params(self.text_encoder.parameters())
    def decode_latents_tensors(self, latents):
        latents = 1 / 0.18215 * latents
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        return image
    def apply(
        self,
        latents: torch.Tensor,
        prompt: Union[str, List[str]] = None,
        text_embeddings=None,
        image=None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        timesteps: Optional[List[int]] = None,
        num_inference_steps: int = 1,
        guidance_scale: float = 1.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
    ) -> torch.Tensor:
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor
        # to deal with lora scaling and other possible forward hooks
        prompt_embeds = None
        negative_prompt_embeds = None
        ip_adapter_image = None
        ip_adapter_image_embeds = None
        callback_on_step_end_tensor_inputs = None
        guidance_rescale = 0.0
        clip_skip = None
        cross_attention_kwargs = None
        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            ip_adapter_image,
            ip_adapter_image_embeds,
            callback_on_step_end_tensor_inputs,
        )
        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
        self._interrupt = False
        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]
        device = self._execution_device
        # 3. Encode input prompt
        lora_scale = (
            self.cross_attention_kwargs.get("scale", None)
            if self.cross_attention_kwargs is not None
            else None
        )
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            clip_skip=self.clip_skip,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )
        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, timesteps
        )
        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )
        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
        # 6.1 Add image embeds for IP-Adapter
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
            else None
        )
        # 6.2 Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
                batch_size * num_images_per_prompt
            )
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)
        # 7. Denoising loop
        self._num_timesteps = len(timesteps)
        for i, t in enumerate(timesteps):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = (
                torch.cat([latents] * 2)
                if self.do_classifier_free_guidance
                else latents
            )
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
            # predict the noise residual
            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                timestep_cond=timestep_cond,
                added_cond_kwargs=added_cond_kwargs,
                return_dict=False,
            )[0]
            # perform guidance
            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (
                    noise_pred_text - noise_pred_uncond
                )
            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(
                noise_pred, t, latents, **extra_step_kwargs, return_dict=False
            )[0]
        image = self.decode_latents_tensors(latents)
        return image
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
                must be `None`.
    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps | 
