Spaces:
Sleeping
Sleeping
File size: 18,579 Bytes
ca25718 666f4a3 ca25718 dd8f929 ca25718 3e6b0ce dd551fd ca25718 dd551fd ca25718 0572ad4 ca25718 dd551fd ca25718 dd551fd ca25718 dd551fd ca25718 dd8f929 dd551fd dd8f929 3e6b0ce dd551fd 3e6b0ce dd551fd 3e6b0ce dd551fd ca25718 dd8f929 38ce166 3e6b0ce 2fadfd7 dd551fd ca25718 dd8f929 ca25718 38ce166 ca25718 dd8f929 ca25718 dd8f929 ca25718 dd8f929 ca25718 dd8f929 ca25718 a86116e ca25718 dd551fd 38ce166 dd551fd 38ce166 3e6b0ce ca25718 3e6b0ce a86116e 9de4480 38ce166 3e6b0ce dd8f929 ca25718 3e6b0ce ca25718 dd8f929 ca25718 dd8f929 ca25718 dd8f929 ca25718 dd8f929 ca25718 dd8f929 ca25718 dd8f929 ca25718 dd8f929 ca25718 dd8f929 ca25718 dd8f929 ca25718 9de4480 ca25718 3e6b0ce 9de4480 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import json
import logging
import os
import blobfile as bf
import torch
import gc
from datasets import load_dataset
from pytorch_lightning import seed_everything
from tqdm import tqdm
from arguments import parse_args
from models import get_model, get_multi_apply_fn
from rewards import get_reward_losses
from training import LatentNoiseTrainer, get_optimizer
import torch
import gc
def clear_gpu():
"""Clear GPU memory by removing tensors, freeing cache, and moving data to CPU."""
# List memory usage before clearing
print(f"Memory allocated before clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
print(f"Memory reserved before clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")
# Force the garbage collector to free unreferenced objects
gc.collect()
# Move any bound tensors back to CPU if needed
if torch.cuda.is_available():
torch.cuda.empty_cache() # Free up the cached memory
torch.cuda.ipc_collect() # Clear any cross-process memory
print(f"Memory allocated after clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
print(f"Memory reserved after clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")
def unload_previous_model_if_needed(loaded_model_setup):
"""Unload the current model from the GPU and free resources if a new model is being loaded."""
if loaded_model_setup is not None:
print("Unloading previous model from GPU to free memory.")
previous_model = loaded_model_setup[7] # Assuming pipe is at position [7] in the setup
if hasattr(previous_model, 'to') and loaded_model_setup[0].model != "flux":
previous_model.to('cpu') # Move model to CPU to free GPU memory
del previous_model # Delete the reference to the model
clear_gpu() # Clear all remaining GPU memory
def setup(args, loaded_model_setup=None):
seed_everything(args.seed)
bf.makedirs(f"{args.save_dir}/logs/{args.task}")
# Set up logging and name settings
logger = logging.getLogger()
logger.handlers.clear() # Clear existing handlers
settings = (
f"{args.model}{'_' + args.prompt if args.task == 't2i-compbench' else ''}"
f"{'_no-optim' if args.no_optim else ''}_{args.seed if args.task != 'geneval' else ''}"
f"_lr{args.lr}_gc{args.grad_clip}_iter{args.n_iters}"
f"_reg{args.reg_weight if args.enable_reg else '0'}"
f"{'_pickscore' + str(args.pickscore_weighting) if args.enable_pickscore else ''}"
f"{'_clip' + str(args.clip_weighting) if args.enable_clip else ''}"
f"{'_hps' + str(args.hps_weighting) if args.enable_hps else ''}"
f"{'_imagereward' + str(args.imagereward_weighting) if args.enable_imagereward else ''}"
f"{'_aesthetic' + str(args.aesthetic_weighting) if args.enable_aesthetic else ''}"
)
file_stream = open(f"{args.save_dir}/logs/{args.task}/{settings}.txt", "w")
handler = logging.StreamHandler(file_stream)
formatter = logging.Formatter("%(asctime)s - %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel("INFO")
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(formatter)
logger.addHandler(consoleHandler)
logging.info(args)
if args.device_id is not None:
logging.info(f"Using CUDA device {args.device_id}")
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.device_id
device = torch.device("cuda")
dtype = torch.float16 if args.dtype == "float16" else torch.float32
# If args.model is the same as the one in loaded_model_setup, reuse the trainer and pipe
if loaded_model_setup and args.model == loaded_model_setup[0].model:
print(f"Reusing model {args.model} from loaded setup.")
trainer = loaded_model_setup[1] # Trainer is at position 1 in loaded_model_setup
# Update trainer with the new arguments
trainer.n_iters = args.n_iters
trainer.n_inference_steps = args.n_inference_steps
trainer.seed = args.seed
trainer.save_all_images = args.save_all_images
trainer.no_optim = args.no_optim
trainer.regularize = args.enable_reg
trainer.regularization_weight = args.reg_weight
trainer.grad_clip = args.grad_clip
trainer.log_metrics = args.task == "single" or not args.no_optim
trainer.imageselect = args.imageselect
# Get latents (this step is still required)
if args.model == "flux":
shape = (1, 16 * 64, 64)
elif args.model != "pixart":
height = trainer.model.unet.config.sample_size * trainer.model.vae_scale_factor
width = trainer.model.unet.config.sample_size * trainer.model.vae_scale_factor
shape = (
1,
trainer.model.unet.in_channels,
height // trainer.model.vae_scale_factor,
width // trainer.model.vae_scale_factor,
)
else:
height = trainer.model.transformer.config.sample_size * trainer.model.vae_scale_factor
width = trainer.model.transformer.config.sample_size * trainer.model.vae_scale_factor
shape = (
1,
trainer.model.transformer.config.in_channels,
height // trainer.model.vae_scale_factor,
width // trainer.model.vae_scale_factor,
)
pipe = loaded_model_setup[7]
enable_grad = not args.no_optim
return args, trainer, device, dtype, shape, enable_grad, settings, pipe
# Unload previous model and clear GPU resources
unload_previous_model_if_needed(loaded_model_setup)
# Proceed with full model loading if args.model is different
print(f"Loading new model: {args.model}")
# Get reward losses
reward_losses = get_reward_losses(args, dtype, device, args.cache_dir)
# Get model and noise trainer
pipe = get_model(
args.model, dtype, device, args.cache_dir, args.memsave, args.cpu_offloading
)
# Final memory cleanup after model loading
torch.cuda.empty_cache()
gc.collect()
trainer = LatentNoiseTrainer(
reward_losses=reward_losses,
model=pipe,
n_iters=args.n_iters,
n_inference_steps=args.n_inference_steps,
seed=args.seed,
save_all_images=args.save_all_images,
device=device if not args.cpu_offloading else 'cpu', # Use CPU if offloading is enabled
no_optim=args.no_optim,
regularize=args.enable_reg,
regularization_weight=args.reg_weight,
grad_clip=args.grad_clip,
log_metrics=args.task == "single" or not args.no_optim,
imageselect=args.imageselect,
)
# Create latents
if args.model == "flux":
shape = (1, 16 * 64, 64)
elif args.model != "pixart":
height = pipe.unet.config.sample_size * pipe.vae_scale_factor
width = pipe.unet.config.sample_size * pipe.vae_scale_factor
shape = (
1,
pipe.unet.in_channels,
height // pipe.vae_scale_factor,
width // pipe.vae_scale_factor,
)
else:
height = pipe.transformer.config.sample_size * pipe.vae_scale_factor
width = pipe.transformer.config.sample_size * pipe.vae_scale_factor
shape = (
1,
pipe.transformer.config.in_channels,
height // pipe.vae_scale_factor,
width // pipe.vae_scale_factor,
)
enable_grad = not args.no_optim
# Final memory cleanup
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
return args, trainer, device, dtype, shape, enable_grad, settings, pipe
def execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pipe, progress_callback=None):
if args.task == "single":
# Attempt to move the model to GPU if model is not Flux
if args.model != "flux":
if pipe.device != torch.device('cuda'):
pipe.to(device, dtype)
else:
print(f"PIPE:{pipe}")
if args.cpu_offloading:
pipe.enable_sequential_cpu_offload()
#if pipe.device != torch.device('cuda'):
# pipe.to(device, dtype)
if args.enable_multi_apply:
multi_apply_fn = get_multi_apply_fn(
model_type=args.multi_step_model,
seed=args.seed,
pipe=pipe,
cache_dir=args.cache_dir,
device=device if not args.cpu_offloading else 'cpu',
dtype=dtype,
)
else:
multi_apply_fn = None
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
init_latents = torch.randn(shape, device=device, dtype=dtype)
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt[:150]}"
os.makedirs(f"{save_dir}", exist_ok=True)
init_image, best_image, total_init_rewards, total_best_rewards = trainer.train(
latents, args.prompt, optimizer, save_dir, multi_apply_fn, progress_callback=progress_callback
)
best_image.save(f"{save_dir}/best_image.png")
#init_image.save(f"{save_dir}/init_image.png")
elif args.task == "example-prompts":
fo = open("assets/example_prompts.txt", "r")
prompts = fo.readlines()
fo.close()
for i, prompt in tqdm(enumerate(prompts)):
# Get new latents and optimizer
init_latents = torch.randn(shape, device=device, dtype=dtype)
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
prompt = prompt.strip()
name = f"{i:03d}_{prompt[:150]}.png"
save_dir = f"{args.save_dir}/{args.task}/{settings}/{name}"
os.makedirs(save_dir, exist_ok=True)
init_image, best_image, init_rewards, best_rewards = trainer.train(
latents, prompt, optimizer, save_dir, multi_apply_fn
)
if i == 0:
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
for k in best_rewards.keys():
total_best_rewards[k] += best_rewards[k]
total_init_rewards[k] += init_rewards[k]
best_image.save(f"{save_dir}/best_image.png")
init_image.save(f"{save_dir}/init_image.png")
logging.info(f"Initial rewards: {init_rewards}")
logging.info(f"Best rewards: {best_rewards}")
for k in total_best_rewards.keys():
total_best_rewards[k] /= len(prompts)
total_init_rewards[k] /= len(prompts)
# save results to directory
with open(f"{args.save_dir}/example-prompts/{settings}/results.txt", "w") as f:
f.write(
f"Mean initial all rewards: {total_init_rewards}\n"
f"Mean best all rewards: {total_best_rewards}\n"
)
elif args.task == "t2i-compbench":
prompt_list_file = f"../T2I-CompBench/examples/dataset/{args.prompt}.txt"
fo = open(prompt_list_file, "r")
prompts = fo.readlines()
fo.close()
os.makedirs(f"{args.save_dir}/{args.task}/{settings}/samples", exist_ok=True)
for i, prompt in tqdm(enumerate(prompts)):
# Get new latents and optimizer
init_latents = torch.randn(shape, device=device, dtype=dtype)
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
prompt = prompt.strip()
init_image, best_image, init_rewards, best_rewards = trainer.train(
latents, prompt, optimizer, None, multi_apply_fn
)
if i == 0:
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
for k in best_rewards.keys():
total_best_rewards[k] += best_rewards[k]
total_init_rewards[k] += init_rewards[k]
name = f"{prompt}_{i:06d}.png"
best_image.save(f"{args.save_dir}/{args.task}/{settings}/samples/{name}")
logging.info(f"Initial rewards: {init_rewards}")
logging.info(f"Best rewards: {best_rewards}")
for k in total_best_rewards.keys():
total_best_rewards[k] /= len(prompts)
total_init_rewards[k] /= len(prompts)
elif args.task == "parti-prompts":
parti_dataset = load_dataset("nateraw/parti-prompts", split="train")
total_reward_diff = 0.0
total_best_reward = 0.0
total_init_reward = 0.0
total_improved_samples = 0
for index, sample in enumerate(parti_dataset):
os.makedirs(
f"{args.save_dir}/{args.task}/{settings}/{index}", exist_ok=True
)
prompt = sample["Prompt"]
init_image, best_image, init_rewards, best_rewards = trainer.train(
latents, prompt, optimizer, multi_apply_fn
)
best_image.save(
f"{args.save_dir}/{args.task}/{settings}/{index}/best_image.png"
)
open(
f"{args.save_dir}/{args.task}/{settings}/{index}/prompt.txt", "w"
).write(
f"{prompt} \n Initial Rewards: {init_rewards} \n Best Rewards: {best_rewards}"
)
logging.info(f"Initial rewards: {init_rewards}")
logging.info(f"Best rewards: {best_rewards}")
initial_reward = init_rewards[args.benchmark_reward]
best_reward = best_rewards[args.benchmark_reward]
total_reward_diff += best_reward - initial_reward
total_best_reward += best_reward
total_init_reward += initial_reward
if best_reward < initial_reward:
total_improved_samples += 1
if i == 0:
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
for k in best_rewards.keys():
total_best_rewards[k] += best_rewards[k]
total_init_rewards[k] += init_rewards[k]
# Get new latents and optimizer
init_latents = torch.randn(shape, device=device, dtype=dtype)
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
improvement_percentage = total_improved_samples / parti_dataset.num_rows
mean_best_reward = total_best_reward / parti_dataset.num_rows
mean_init_reward = total_init_reward / parti_dataset.num_rows
mean_reward_diff = total_reward_diff / parti_dataset.num_rows
logging.info(
f"Improvement percentage: {improvement_percentage:.4f}, "
f"mean initial reward: {mean_init_reward:.4f}, "
f"mean best reward: {mean_best_reward:.4f}, "
f"mean reward diff: {mean_reward_diff:.4f}"
)
for k in total_best_rewards.keys():
total_best_rewards[k] /= len(parti_dataset)
total_init_rewards[k] /= len(parti_dataset)
# save results
os.makedirs(f"{args.save_dir}/parti-prompts/{settings}", exist_ok=True)
with open(f"{args.save_dir}/parti-prompts/{settings}/results.txt", "w") as f:
f.write(
f"Mean improvement: {improvement_percentage:.4f}, "
f"mean initial reward: {mean_init_reward:.4f}, "
f"mean best reward: {mean_best_reward:.4f}, "
f"mean reward diff: {mean_reward_diff:.4f}\n"
f"Mean initial all rewards: {total_init_rewards}\n"
f"Mean best all rewards: {total_best_rewards}"
)
elif args.task == "geneval":
prompt_list_file = "../geneval/prompts/evaluation_metadata.jsonl"
with open(prompt_list_file) as fp:
metadatas = [json.loads(line) for line in fp]
outdir = f"{args.save_dir}/{args.task}/{settings}"
for index, metadata in enumerate(metadatas):
# Get new latents and optimizer
init_latents = torch.randn(shape, device=device, dtype=dtype)
latents = torch.nn.Parameter(init_latents, requires_grad=True)
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
prompt = metadata["prompt"]
init_image, best_image, init_rewards, best_rewards = trainer.train(
latents, prompt, optimizer, None, multi_apply_fn
)
logging.info(f"Initial rewards: {init_rewards}")
logging.info(f"Best rewards: {best_rewards}")
outpath = f"{outdir}/{index:0>5}"
os.makedirs(f"{outpath}/samples", exist_ok=True)
with open(f"{outpath}/metadata.jsonl", "w") as fp:
json.dump(metadata, fp)
best_image.save(f"{outpath}/samples/{args.seed:05}.png")
if i == 0:
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
for k in best_rewards.keys():
total_best_rewards[k] += best_rewards[k]
total_init_rewards[k] += init_rewards[k]
for k in total_best_rewards.keys():
total_best_rewards[k] /= len(parti_dataset)
total_init_rewards[k] /= len(parti_dataset)
else:
raise ValueError(f"Unknown task {args.task}")
# log total rewards
logging.info(f"Mean initial rewards: {total_init_rewards}")
logging.info(f"Mean best rewards: {total_best_rewards}")
def main():
args = parse_args()
args, trainer, device, dtype, shape, enable_grad, settings, pipe = setup(args, loaded_model_setup=None)
execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pipe)
if __name__ == "__main__":
main() |