File size: 18,579 Bytes
ca25718
 
 
 
 
 
666f4a3
ca25718
 
 
 
 
dd8f929
ca25718
 
 
 
3e6b0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd551fd
ca25718
 
dd551fd
ca25718
 
0572ad4
ca25718
 
 
 
 
 
 
 
 
 
 
dd551fd
ca25718
 
 
 
 
 
 
 
 
dd551fd
ca25718
dd551fd
ca25718
 
 
dd8f929
dd551fd
dd8f929
3e6b0ce
dd551fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e6b0ce
dd551fd
 
3e6b0ce
 
 
 
dd551fd
 
 
 
ca25718
 
 
 
dd8f929
 
 
38ce166
3e6b0ce
 
2fadfd7
dd551fd
ca25718
 
dd8f929
ca25718
 
 
 
38ce166
ca25718
 
 
 
 
 
 
 
 
dd8f929
 
 
 
 
ca25718
 
dd8f929
 
 
ca25718
 
dd8f929
 
ca25718
 
dd8f929
 
 
ca25718
a86116e
ca25718
dd551fd
38ce166
dd551fd
 
38ce166
3e6b0ce
ca25718
3e6b0ce
a86116e
9de4480
38ce166
 
3e6b0ce
dd8f929
ca25718
3e6b0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca25718
 
 
dd8f929
ca25718
dd8f929
 
ca25718
 
dd8f929
 
ca25718
 
 
 
 
 
 
 
 
 
 
dd8f929
ca25718
 
dd8f929
 
ca25718
 
 
 
 
 
 
 
dd8f929
ca25718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd8f929
 
ca25718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd8f929
 
ca25718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd8f929
 
ca25718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9de4480
 
ca25718
3e6b0ce
 
9de4480
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import json
import logging
import os

import blobfile as bf
import torch
import gc
from datasets import load_dataset
from pytorch_lightning import seed_everything
from tqdm import tqdm

from arguments import parse_args
from models import get_model, get_multi_apply_fn
from rewards import get_reward_losses
from training import LatentNoiseTrainer, get_optimizer


import torch
import gc

def clear_gpu():
    """Clear GPU memory by removing tensors, freeing cache, and moving data to CPU."""
    # List memory usage before clearing
    print(f"Memory allocated before clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
    print(f"Memory reserved before clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")
    
    # Force the garbage collector to free unreferenced objects
    gc.collect()

    # Move any bound tensors back to CPU if needed
    if torch.cuda.is_available():
        torch.cuda.empty_cache()  # Free up the cached memory
        torch.cuda.ipc_collect()  # Clear any cross-process memory
    
    print(f"Memory allocated after clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
    print(f"Memory reserved after clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")

def unload_previous_model_if_needed(loaded_model_setup):
    """Unload the current model from the GPU and free resources if a new model is being loaded."""
    if loaded_model_setup is not None:
        print("Unloading previous model from GPU to free memory.")
        previous_model = loaded_model_setup[7]  # Assuming pipe is at position [7] in the setup
        if hasattr(previous_model, 'to') and loaded_model_setup[0].model != "flux":
            previous_model.to('cpu')  # Move model to CPU to free GPU memory
        del previous_model  # Delete the reference to the model
        clear_gpu()  # Clear all remaining GPU memory

def setup(args, loaded_model_setup=None):
    seed_everything(args.seed)
    bf.makedirs(f"{args.save_dir}/logs/{args.task}")
    
    # Set up logging and name settings
    logger = logging.getLogger()
    logger.handlers.clear()  # Clear existing handlers
    settings = (
        f"{args.model}{'_' + args.prompt if args.task == 't2i-compbench' else ''}"
        f"{'_no-optim' if args.no_optim else ''}_{args.seed if args.task != 'geneval' else ''}"
        f"_lr{args.lr}_gc{args.grad_clip}_iter{args.n_iters}"
        f"_reg{args.reg_weight if args.enable_reg else '0'}"
        f"{'_pickscore' + str(args.pickscore_weighting) if args.enable_pickscore else ''}"
        f"{'_clip' + str(args.clip_weighting) if args.enable_clip else ''}"
        f"{'_hps' + str(args.hps_weighting) if args.enable_hps else ''}"
        f"{'_imagereward' + str(args.imagereward_weighting) if args.enable_imagereward else ''}"
        f"{'_aesthetic' + str(args.aesthetic_weighting) if args.enable_aesthetic else ''}"
    )
    
    file_stream = open(f"{args.save_dir}/logs/{args.task}/{settings}.txt", "w")
    handler = logging.StreamHandler(file_stream)
    formatter = logging.Formatter("%(asctime)s - %(message)s")
    handler.setFormatter(formatter)
    logger.addHandler(handler)
    logger.setLevel("INFO")
    consoleHandler = logging.StreamHandler()
    consoleHandler.setFormatter(formatter)
    logger.addHandler(consoleHandler)
    
    logging.info(args)
    
    if args.device_id is not None:
        logging.info(f"Using CUDA device {args.device_id}")
        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
        os.environ["CUDA_VISIBLE_DEVICES"] = args.device_id

    device = torch.device("cuda")
    dtype = torch.float16 if args.dtype == "float16" else torch.float32

    # If args.model is the same as the one in loaded_model_setup, reuse the trainer and pipe
    if loaded_model_setup and args.model == loaded_model_setup[0].model:
        print(f"Reusing model {args.model} from loaded setup.")
        trainer = loaded_model_setup[1]  # Trainer is at position 1 in loaded_model_setup
        
        # Update trainer with the new arguments
        trainer.n_iters = args.n_iters
        trainer.n_inference_steps = args.n_inference_steps
        trainer.seed = args.seed
        trainer.save_all_images = args.save_all_images
        trainer.no_optim = args.no_optim
        trainer.regularize = args.enable_reg
        trainer.regularization_weight = args.reg_weight
        trainer.grad_clip = args.grad_clip
        trainer.log_metrics = args.task == "single" or not args.no_optim
        trainer.imageselect = args.imageselect
        
        # Get latents (this step is still required)
        if args.model == "flux":
            shape = (1, 16 * 64, 64)
        elif args.model != "pixart":
            height = trainer.model.unet.config.sample_size * trainer.model.vae_scale_factor
            width = trainer.model.unet.config.sample_size * trainer.model.vae_scale_factor
            shape = (
                1,
                trainer.model.unet.in_channels,
                height // trainer.model.vae_scale_factor,
                width // trainer.model.vae_scale_factor,
            )
        else:
            height = trainer.model.transformer.config.sample_size * trainer.model.vae_scale_factor
            width = trainer.model.transformer.config.sample_size * trainer.model.vae_scale_factor
            shape = (
                1,
                trainer.model.transformer.config.in_channels,
                height // trainer.model.vae_scale_factor,
                width // trainer.model.vae_scale_factor,
            )
        
        pipe = loaded_model_setup[7]
        enable_grad = not args.no_optim

        return args, trainer, device, dtype, shape, enable_grad, settings, pipe

    # Unload previous model and clear GPU resources
    unload_previous_model_if_needed(loaded_model_setup)

    # Proceed with full model loading if args.model is different
    print(f"Loading new model: {args.model}")
    
    # Get reward losses
    reward_losses = get_reward_losses(args, dtype, device, args.cache_dir)

    # Get model and noise trainer
    pipe = get_model(
        args.model, dtype, device, args.cache_dir, args.memsave, args.cpu_offloading
    )

    # Final memory cleanup after model loading
    torch.cuda.empty_cache()
    gc.collect()

    trainer = LatentNoiseTrainer(
        reward_losses=reward_losses,
        model=pipe,
        n_iters=args.n_iters,
        n_inference_steps=args.n_inference_steps,
        seed=args.seed,
        save_all_images=args.save_all_images,
        device=device if not args.cpu_offloading else 'cpu',  # Use CPU if offloading is enabled
        no_optim=args.no_optim,
        regularize=args.enable_reg,
        regularization_weight=args.reg_weight,
        grad_clip=args.grad_clip,
        log_metrics=args.task == "single" or not args.no_optim,
        imageselect=args.imageselect,
    )

    # Create latents
    if args.model == "flux":
        shape = (1, 16 * 64, 64)
    elif args.model != "pixart":
        height = pipe.unet.config.sample_size * pipe.vae_scale_factor
        width = pipe.unet.config.sample_size * pipe.vae_scale_factor
        shape = (
            1,
            pipe.unet.in_channels,
            height // pipe.vae_scale_factor,
            width // pipe.vae_scale_factor,
        )
    else:
        height = pipe.transformer.config.sample_size * pipe.vae_scale_factor
        width = pipe.transformer.config.sample_size * pipe.vae_scale_factor
        shape = (
            1,
            pipe.transformer.config.in_channels,
            height // pipe.vae_scale_factor,
            width // pipe.vae_scale_factor,
        )
    
    enable_grad = not args.no_optim

    # Final memory cleanup
    torch.cuda.empty_cache()  # Free up cached memory
    gc.collect()

    

    return args, trainer, device, dtype, shape, enable_grad, settings, pipe




def execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pipe, progress_callback=None):
    
    if args.task == "single":
        # Attempt to move the model to GPU if model is not Flux
        if args.model != "flux":
            if pipe.device != torch.device('cuda'):
                pipe.to(device, dtype)
        else:
            print(f"PIPE:{pipe}")
            
            
            if args.cpu_offloading:
                pipe.enable_sequential_cpu_offload()

            #if pipe.device != torch.device('cuda'):
            #    pipe.to(device, dtype)
        
        if args.enable_multi_apply:
            
            multi_apply_fn = get_multi_apply_fn(
                model_type=args.multi_step_model,
                seed=args.seed,
                pipe=pipe,
                cache_dir=args.cache_dir,
                device=device if not args.cpu_offloading else 'cpu',
                dtype=dtype,
            )
        else:
            multi_apply_fn = None    
    
        torch.cuda.empty_cache()  # Free up cached memory
        gc.collect()
    

        init_latents = torch.randn(shape, device=device, dtype=dtype)
        latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
        optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
        save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt[:150]}"
        os.makedirs(f"{save_dir}", exist_ok=True)
        init_image, best_image, total_init_rewards, total_best_rewards = trainer.train(
            latents, args.prompt, optimizer, save_dir, multi_apply_fn, progress_callback=progress_callback
        )
        best_image.save(f"{save_dir}/best_image.png")
        #init_image.save(f"{save_dir}/init_image.png")

    elif args.task == "example-prompts":
        fo = open("assets/example_prompts.txt", "r")
        prompts = fo.readlines()
        fo.close()
        for i, prompt in tqdm(enumerate(prompts)):
            # Get new latents and optimizer
            init_latents = torch.randn(shape, device=device, dtype=dtype)
            latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
            optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)

            prompt = prompt.strip()
            name = f"{i:03d}_{prompt[:150]}.png"
            save_dir = f"{args.save_dir}/{args.task}/{settings}/{name}"
            os.makedirs(save_dir, exist_ok=True)
            init_image, best_image, init_rewards, best_rewards = trainer.train(
                latents, prompt, optimizer, save_dir, multi_apply_fn
            )
            if i == 0:
                total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
                total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
            for k in best_rewards.keys():
                total_best_rewards[k] += best_rewards[k]
                total_init_rewards[k] += init_rewards[k]
            best_image.save(f"{save_dir}/best_image.png")
            init_image.save(f"{save_dir}/init_image.png")
            logging.info(f"Initial rewards: {init_rewards}")
            logging.info(f"Best rewards: {best_rewards}")
        for k in total_best_rewards.keys():
            total_best_rewards[k] /= len(prompts)
            total_init_rewards[k] /= len(prompts)

        # save results to directory
        with open(f"{args.save_dir}/example-prompts/{settings}/results.txt", "w") as f:
            f.write(
                f"Mean initial all rewards: {total_init_rewards}\n"
                f"Mean best all rewards: {total_best_rewards}\n"
            )
    elif args.task == "t2i-compbench":
        prompt_list_file = f"../T2I-CompBench/examples/dataset/{args.prompt}.txt"
        fo = open(prompt_list_file, "r")
        prompts = fo.readlines()
        fo.close()
        os.makedirs(f"{args.save_dir}/{args.task}/{settings}/samples", exist_ok=True)
        for i, prompt in tqdm(enumerate(prompts)):
            # Get new latents and optimizer
            init_latents = torch.randn(shape, device=device, dtype=dtype)
            latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
            optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)

            prompt = prompt.strip()
            init_image, best_image, init_rewards, best_rewards = trainer.train(
                latents, prompt, optimizer, None, multi_apply_fn
            )
            if i == 0:
                total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
                total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
            for k in best_rewards.keys():
                total_best_rewards[k] += best_rewards[k]
                total_init_rewards[k] += init_rewards[k]
            name = f"{prompt}_{i:06d}.png"
            best_image.save(f"{args.save_dir}/{args.task}/{settings}/samples/{name}")
            logging.info(f"Initial rewards: {init_rewards}")
            logging.info(f"Best rewards: {best_rewards}")
        for k in total_best_rewards.keys():
            total_best_rewards[k] /= len(prompts)
            total_init_rewards[k] /= len(prompts)
    elif args.task == "parti-prompts":
        parti_dataset = load_dataset("nateraw/parti-prompts", split="train")
        total_reward_diff = 0.0
        total_best_reward = 0.0
        total_init_reward = 0.0
        total_improved_samples = 0
        for index, sample in enumerate(parti_dataset):
            os.makedirs(
                f"{args.save_dir}/{args.task}/{settings}/{index}", exist_ok=True
            )
            prompt = sample["Prompt"]
            init_image, best_image, init_rewards, best_rewards = trainer.train(
                latents, prompt, optimizer, multi_apply_fn
            )
            best_image.save(
                f"{args.save_dir}/{args.task}/{settings}/{index}/best_image.png"
            )
            open(
                f"{args.save_dir}/{args.task}/{settings}/{index}/prompt.txt", "w"
            ).write(
                f"{prompt} \n Initial Rewards: {init_rewards} \n Best Rewards: {best_rewards}"
            )
            logging.info(f"Initial rewards: {init_rewards}")
            logging.info(f"Best rewards: {best_rewards}")
            initial_reward = init_rewards[args.benchmark_reward]
            best_reward = best_rewards[args.benchmark_reward]
            total_reward_diff += best_reward - initial_reward
            total_best_reward += best_reward
            total_init_reward += initial_reward
            if best_reward < initial_reward:
                total_improved_samples += 1
            if i == 0:
                total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
                total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
            for k in best_rewards.keys():
                total_best_rewards[k] += best_rewards[k]
                total_init_rewards[k] += init_rewards[k]
            # Get new latents and optimizer
            init_latents = torch.randn(shape, device=device, dtype=dtype)
            latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
            optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
        improvement_percentage = total_improved_samples / parti_dataset.num_rows
        mean_best_reward = total_best_reward / parti_dataset.num_rows
        mean_init_reward = total_init_reward / parti_dataset.num_rows
        mean_reward_diff = total_reward_diff / parti_dataset.num_rows
        logging.info(
            f"Improvement percentage: {improvement_percentage:.4f}, "
            f"mean initial reward: {mean_init_reward:.4f}, "
            f"mean best reward: {mean_best_reward:.4f}, "
            f"mean reward diff: {mean_reward_diff:.4f}"
        )
        for k in total_best_rewards.keys():
            total_best_rewards[k] /= len(parti_dataset)
            total_init_rewards[k] /= len(parti_dataset)
        # save results
        os.makedirs(f"{args.save_dir}/parti-prompts/{settings}", exist_ok=True)
        with open(f"{args.save_dir}/parti-prompts/{settings}/results.txt", "w") as f:
            f.write(
                f"Mean improvement: {improvement_percentage:.4f}, "
                f"mean initial reward: {mean_init_reward:.4f}, "
                f"mean best reward: {mean_best_reward:.4f}, "
                f"mean reward diff: {mean_reward_diff:.4f}\n"
                f"Mean initial all rewards: {total_init_rewards}\n"
                f"Mean best all rewards: {total_best_rewards}"
            )
    elif args.task == "geneval":
        prompt_list_file = "../geneval/prompts/evaluation_metadata.jsonl"
        with open(prompt_list_file) as fp:
            metadatas = [json.loads(line) for line in fp]
        outdir = f"{args.save_dir}/{args.task}/{settings}"
        for index, metadata in enumerate(metadatas):
            # Get new latents and optimizer
            init_latents = torch.randn(shape, device=device, dtype=dtype)
            latents = torch.nn.Parameter(init_latents, requires_grad=True)
            optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)

            prompt = metadata["prompt"]
            init_image, best_image, init_rewards, best_rewards = trainer.train(
                latents, prompt, optimizer, None, multi_apply_fn
            )
            logging.info(f"Initial rewards: {init_rewards}")
            logging.info(f"Best rewards: {best_rewards}")
            outpath = f"{outdir}/{index:0>5}"
            os.makedirs(f"{outpath}/samples", exist_ok=True)
            with open(f"{outpath}/metadata.jsonl", "w") as fp:
                json.dump(metadata, fp)
            best_image.save(f"{outpath}/samples/{args.seed:05}.png")
            if i == 0:
                total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
                total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
            for k in best_rewards.keys():
                total_best_rewards[k] += best_rewards[k]
                total_init_rewards[k] += init_rewards[k]
        for k in total_best_rewards.keys():
            total_best_rewards[k] /= len(parti_dataset)
            total_init_rewards[k] /= len(parti_dataset)
    else:
        raise ValueError(f"Unknown task {args.task}")
    # log total rewards
    logging.info(f"Mean initial rewards: {total_init_rewards}")
    logging.info(f"Mean best rewards: {total_best_rewards}")

def main():
    args = parse_args()
    args, trainer, device, dtype, shape, enable_grad, settings, pipe = setup(args, loaded_model_setup=None)
    execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pipe)

if __name__ == "__main__":
    main()