File size: 4,358 Bytes
0faf301
c71a436
d2be6c5
 
 
 
 
6e9a86d
d2be6c5
 
 
 
 
 
 
 
2cb0c9e
 
d2be6c5
 
6e9a86d
 
 
d2be6c5
 
 
 
 
1131010
 
 
d2be6c5
0cdac26
64bb281
0faf301
 
 
 
 
 
1131010
 
 
 
 
0faf301
 
 
 
d2be6c5
 
 
 
d43f63e
 
 
 
 
 
d2be6c5
 
 
b1f8888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e187d73
 
 
 
 
 
b1f8888
64bb281
d43f63e
e187d73
 
 
64bb281
 
 
 
 
 
 
 
 
 
 
cb886e8
1131010
 
cb886e8
 
 
 
 
86f7a3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e9a86d
b1f8888
d2be6c5
06e59b9
 
 
d2be6c5
6e9a86d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
FROM pytorch/pytorch:2.1.2-cuda11.8-cudnn8-devel
ENV DEBIAN_FRONTEND=noninteractive

RUN apt-get update && apt-get install -y \
    build-essential \
    python3.9 \
    python3-pip \
    python3-venv \
    libssl-dev \
    libffi-dev \
    git \
    wget \
    ca-certificates \
    libgl1-mesa-glx \
    libglib2.0-0 \
    python3-dev \
    cuda-toolkit-11-8 \
    g++ \
    && rm -rf /var/lib/apt/lists/*

# Create a symlink for python
RUN ln -s /usr/bin/python3 /usr/bin/python

# Create a non-root user
RUN useradd -m -u 1000 user

USER user

# Verify CUDA installation path
RUN find /usr/local -type d -name "cuda*"

ENV HOME=/home/user \
    PATH=/home/user/.local/bin:$PATH \
    PYTHONPATH=$HOME/app \
    PYTHONUNBUFFERED=1 \
	GRADIO_ALLOW_FLAGGING=never \
	GRADIO_NUM_PORTS=1 \
	GRADIO_SERVER_NAME=0.0.0.0 \
	GRADIO_THEME=huggingface \
    GRADIO_SHARE=False \
	SYSTEM=spaces

# Set CUDA_HOME environment variable
ENV CUDA_HOME=/usr/local/cuda-11.8
ENV LD_LIBRARY_PATH=${CUDA_HOME}/lib64:${LD_LIBRARY_PATH}

# Set the environment variable to specify the GPU device
ENV CUDA_DEVICE_ORDER=PCI_BUS_ID
ENV CUDA_VISIBLE_DEVICES=0

# Clone the RB-Modulation repository
RUN git clone https://github.com/google/RB-Modulation.git $HOME/app

# Ensure CSD directory exists and is in the correct location
RUN if [ ! -d "$HOME/app/third_party/CSD" ]; then \
        echo "CSD directory not found in the expected location" && \
        exit 1; \
    fi

# Set the working directory
WORKDIR $HOME/app

RUN python3 -m pip install --upgrade pip

# Download pretrained models
RUN cd third_party/StableCascade/models && \
    bash download_models.sh essential big-big bfloat16 && \
    cd ../../..

# Install StableCascade requirements
RUN cd third_party/StableCascade && \
    pip install --no-cache-dir -r requirements.txt && \
    pip install --no-cache-dir jupyter notebook opencv-python matplotlib ftfy && \
    cd ../..

# Install gdown for Google Drive downloads
RUN pip install --no-cache-dir gdown

# Download pre-trained CSD weights
RUN gdown https://drive.google.com/uc?id=1FX0xs8p-C7Ob-h5Y4cUhTeOepHzXv_46 -O $HOME/app/third_party/CSD/checkpoint.pth

# Verify the download
RUN if [ ! -f "$HOME/app/third_party/CSD/checkpoint.pth" ]; then \
        echo "CSD checkpoint file not found" && exit 1; \
    fi

RUN ls -la $HOME/app/third_party/CSD

# Ensure CSD is a proper Python package
RUN touch $HOME/app/third_party/CSD/__init__.py

# Update PYTHONPATH
ENV PYTHONPATH=$HOME/app:$HOME/app/third_party:$PYTHONPATH

# Print Python path
RUN python -c "import sys; print('\n'.join(sys.path))"

# Verify CSD module can be imported (try different methods)
RUN python -c "from third_party.CSD import model; print('CSD model successfully imported')" || \
    python -c "import sys; sys.path.append('/home/user/app/third_party'); from CSD import model; print('CSD model successfully imported')"


# Install LangSAM and its dependencies
RUN pip install --no-cache-dir git+https://github.com/IDEA-Research/GroundingDINO.git && \
    pip install --no-cache-dir segment-anything==1.0 && \
    git clone https://github.com/luca-medeiros/lang-segment-anything && \
    cd lang-segment-anything && \
    pip install -e . && \
    cd ..

# Create a custom setup.py for GroundingDINO extension
RUN echo "from setuptools import setup\n\
from torch.utils.cpp_extension import BuildExtension, CUDAExtension\n\
\n\
setup(\n\
    name='groundingdino',\n\
    ext_modules=[\n\
        CUDAExtension(\n\
            name='_C',\n\
            sources=['/home/user/.local/lib/python3.10/site-packages/groundingdino/models/GroundingDINO/csrc/ms_deform_attn.cpp', '/home/user/.local/lib/python3.10/site-packages/groundingdino/models/GroundingDINO/csrc/ms_deform_attn_cuda.cu'],\n\
            extra_compile_args={'cxx': ['-g'], 'nvcc': ['-O2', '-arch=sm_70']},\n\
        ),\n\
    ],\n\
    cmdclass={\n\
        'build_ext': BuildExtension\n\
    }\n\
)" > /home/user/setup_groundingdino.py

# Compile the GroundingDINO custom C++ operations
RUN cd /home/user && \
    python setup_groundingdino.py build_ext --inplace && \
    rm setup_groundingdino.py

# Upgrade pip and install Gradio
RUN python3 -m pip install --no-cache-dir gradio

# Copy the app.py file from the host to the container
COPY --chown=user:user app.py .

# Command to run the Gradio app
CMD ["python3", "app.py"]