File size: 8,298 Bytes
db12400
b127fd6
5e44253
 
 
6770682
5e44253
19e4624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82002ed
19e4624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db12400
c3d5a7d
 
 
 
 
 
 
 
5e44253
 
b8efd0d
c292509
6770682
 
7bb51ba
 
 
 
 
 
 
 
 
c512cd9
b8efd0d
 
 
 
5e44253
0e2a0ec
5e44253
 
 
 
 
 
 
 
 
 
 
c512cd9
6770682
5e44253
 
6770682
5e44253
c512cd9
5e44253
 
 
 
 
 
54d06ee
c512cd9
55c9cad
5e44253
 
 
3e4418e
6770682
936c431
0e2a0ec
936c431
6770682
5e44253
c8537f5
6770682
936c431
7c8263a
19e4624
fb90370
 
 
34e28bf
 
deb0f32
5e44253
 
c512cd9
6770682
 
db12400
b8efd0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb0f32
b8efd0d
 
 
4577161
 
 
 
 
 
 
 
 
 
 
 
 
b8efd0d
 
9e2421a
 
 
b8efd0d
6a04784
e38439c
deb0f32
bde38a0
54d06ee
19e4624
0880cda
7fa6f4c
bde38a0
19e4624
415663b
cb9800b
604385b
6a04784
6770682
 
 
 
 
f3f522f
bb8add2
 
 
f3f522f
 
 
 
 
 
 
 
 
 
 
b8efd0d
6770682
f90f58c
6770682
db12400
f3f522f
deb0f32
b3003aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr
import os
import cv2
import numpy as np
from moviepy.editor import *
from share_btn import community_icon_html, loading_icon_html, share_js

from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
import torch
from PIL import Image
import time
import psutil
import random


pipe = DiffusionPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
pipe.unet.to(memory_format=torch.channels_last)

device = "GPU πŸ”₯" if torch.cuda.is_available() else "CPU πŸ₯Ά"

if torch.cuda.is_available():
    pipe = pipe.to("cuda")

def pix2pix(
    prompt,
    text_guidance_scale,
    image_guidance_scale,
    image,
    steps,
    neg_prompt="",
    width=512,
    height=512,
    seed=0,
):
    print(psutil.virtual_memory())  # print memory usage

    if seed == 0:
        seed = random.randint(0, 2147483647)

    generator = torch.Generator("cuda").manual_seed(seed)

    try:
        image = Image.open(image)
        ratio = min(height / image.height, width / image.width)
        image = image.resize((int(image.width * ratio), int(image.height * ratio)), Image.LANCZOS)

        result = pipe(
            prompt,
            negative_prompt=neg_prompt,
            image=image,
            num_inference_steps=int(steps),
            image_guidance_scale=image_guidance_scale,
            guidance_scale=text_guidance_scale,
            generator=generator,
        )

        # return replace_nsfw_images(result)
        return result.images, result.nsfw_content_detected, seed
    except Exception as e:
        return None, None, error_str(e)

def error_str(error, title="Error"):
    return (
        f"""#### {title}
            {error}"""
        if error
        else ""
    )

def get_frames(video_in):
    frames = []
    #resize the video
    clip = VideoFileClip(video_in)
    
    #check fps
    if clip.fps > 30:
        print("vide rate is over 30, resetting to 30")
        clip_resized = clip.resize(height=512)
        clip_resized.write_videofile("video_resized.mp4", fps=30)
    else:
        print("video rate is OK")
        clip_resized = clip.resize(height=512)
        clip_resized.write_videofile("video_resized.mp4", fps=clip.fps)
    
    print("video resized to 512 height")
    
    # Opens the Video file with CV2
    cap= cv2.VideoCapture("video_resized.mp4")
    
    fps = cap.get(cv2.CAP_PROP_FPS)
    print("video fps: " + str(fps))
    i=0
    while(cap.isOpened()):
        ret, frame = cap.read()
        if ret == False:
            break
        cv2.imwrite('kang'+str(i)+'.jpg',frame)
        frames.append('kang'+str(i)+'.jpg')
        i+=1
    
    cap.release()
    cv2.destroyAllWindows()
    print("broke the video into frames")
    
    return frames, fps


def create_video(frames, fps):
    print("building video result")
    clip = ImageSequenceClip(frames, fps=fps)
    clip.write_videofile("movie.mp4", fps=fps)
    
    return 'movie.mp4'


def infer(prompt,video_in, seed_in, trim_value):
    print(prompt)
    break_vid = get_frames(video_in)
    
    frames_list= break_vid[0]
    fps = break_vid[1]
    n_frame = int(trim_value*fps)
    
    if n_frame >= len(frames_list):
        print("video is shorter than the cut value")
        n_frame = len(frames_list)
    
    result_frames = []
    print("set stop frames to: " + str(n_frame))
    
    for i in frames_list[0:int(n_frame)]:
        pix2pix_img = pix2pix(prompt,5.5,1.5,i,15,"",512,512,seed_in)
        images = pix2pix_img[0]
        rgb_im = images[0].convert("RGB")
  
        # exporting the image
        rgb_im.save(f"result_img-{i}.jpg")
        result_frames.append(f"result_img-{i}.jpg")
        print("frame " + i + "/" + str(n_frame) + ": done;")

    final_vid = create_video(result_frames, fps)
    print("finished !")
    
    return final_vid, gr.Group.update(visible=True)

title = """
    <div style="text-align: center; max-width: 700px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
        "
        >
        <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
            Pix2Pix Video
        </h1>
        </div>
        <p style="margin-bottom: 10px; font-size: 94%">
        Apply Instruct Pix2Pix Diffusion to a video 
        </p>
    </div>
"""

article = """
    
    <div class="footer">
        <p>
        Examples by <a href="https://twitter.com/CitizenPlain" target="_blank">Nathan Shipley</a> β€’&nbsp;
        Follow <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> for future updates πŸ€—
        </p>
    </div>
    <div id="may-like-container" style="display: flex;justify-content: center;flex-direction: column;align-items: center;margin-bottom: 30px;">
        <p>You may also like: </p>
        <div id="may-like-content" style="display:flex;flex-wrap: wrap;align-items:center;height:20px;">
            
            <svg height="20" width="162" style="margin-left:4px;margin-bottom: 6px;">       
                 <a href="https://huggingface.co/spaces/timbrooks/instruct-pix2pix" target="_blank">
                    <image href="https://img.shields.io/badge/πŸ€— Spaces-Instruct_Pix2Pix-blue" src="https://img.shields.io/badge/πŸ€— Spaces-Instruct_Pix2Pix-blue.png" height="20"/>
                 </a>
            </svg>
            
        </div>
    
    </div>
    
"""

with gr.Blocks(css='style.css') as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)
        with gr.Row():
            with gr.Column():
                video_inp = gr.Video(label="Video source", source="upload", type="filepath", elem_id="input-vid")
                prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=False, elem_id="prompt-in")
                with gr.Row():
                    seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=123456)
                    trim_in = gr.Slider(label="Cut video at (s)", minimun=1, maximum=5, step=1, value=1)
            with gr.Column():
                video_out = gr.Video(label="Pix2pix video result", elem_id="video-output")
                gr.HTML("""
                <a style="display:inline-block" href="https://huggingface.co/spaces/fffiloni/Pix2Pix-Video?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> 
                work with longer videos / skip the queue: 
                """, elem_id="duplicate-container")
                submit_btn = gr.Button("Generate Pix2Pix video")

                with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
                    community_icon = gr.HTML(community_icon_html)
                    loading_icon = gr.HTML(loading_icon_html)
                    share_button = gr.Button("Share to community", elem_id="share-btn")
        
        inputs = [prompt,video_inp,seed_inp, trim_in]
        outputs = [video_out, share_group]
        
        ex = gr.Examples(
            [
                ["Make it a marble sculpture", "./examples/pexels-jill-burrow-7665249_512x512.mp4", 422112651, 4],
                ["Make it molten lava", "./examples/Ocean_Pexels_ 8953474_512x512.mp4", 43571876, 4]
            ],
            inputs=inputs,
            outputs=outputs,
            fn=infer,
            cache_examples=True,
        )
        
        gr.HTML(article)
    
    submit_btn.click(infer, inputs, outputs)
    share_button.click(None, [], [], _js=share_js)

    
    
demo.queue(max_size=12).launch()