Spaces:
Sleeping
Sleeping
File size: 19,306 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
from lib.dataset.mesh_util import SMPLX
from lib.common.render_utils import face_vertices
import numpy as np
import lib.smplx as smplx
import trimesh
import torch
import torch.nn.functional as F
model_init_params = dict(gender='male',
model_type='smplx',
model_path=SMPLX().model_dir,
create_global_orient=False,
create_body_pose=False,
create_betas=False,
create_left_hand_pose=False,
create_right_hand_pose=False,
create_expression=False,
create_jaw_pose=False,
create_leye_pose=False,
create_reye_pose=False,
create_transl=False,
num_pca_comps=12)
def get_smpl_model(model_type, gender):
return smplx.create(**model_init_params)
def normalization(data):
_range = np.max(data) - np.min(data)
return ((data - np.min(data)) / _range)
def sigmoid(x):
z = 1 / (1 + np.exp(-x))
return z
def load_fit_body(fitted_path,
scale,
smpl_type='smplx',
smpl_gender='neutral',
noise_dict=None):
param = np.load(fitted_path, allow_pickle=True)
for key in param.keys():
param[key] = torch.as_tensor(param[key])
smpl_model = get_smpl_model(smpl_type, smpl_gender)
model_forward_params = dict(betas=param['betas'],
global_orient=param['global_orient'],
body_pose=param['body_pose'],
left_hand_pose=param['left_hand_pose'],
right_hand_pose=param['right_hand_pose'],
jaw_pose=param['jaw_pose'],
leye_pose=param['leye_pose'],
reye_pose=param['reye_pose'],
expression=param['expression'],
return_verts=True)
if noise_dict is not None:
model_forward_params.update(noise_dict)
smpl_out = smpl_model(**model_forward_params)
smpl_verts = (
(smpl_out.vertices[0] * param['scale'] + param['translation']) *
scale).detach()
smpl_joints = (
(smpl_out.joints[0] * param['scale'] + param['translation']) *
scale).detach()
smpl_mesh = trimesh.Trimesh(smpl_verts,
smpl_model.faces,
process=False,
maintain_order=True)
return smpl_mesh, smpl_joints
def load_ori_fit_body(fitted_path, smpl_type='smplx', smpl_gender='neutral'):
param = np.load(fitted_path, allow_pickle=True)
for key in param.keys():
param[key] = torch.as_tensor(param[key])
smpl_model = get_smpl_model(smpl_type, smpl_gender)
model_forward_params = dict(betas=param['betas'],
global_orient=param['global_orient'],
body_pose=param['body_pose'],
left_hand_pose=param['left_hand_pose'],
right_hand_pose=param['right_hand_pose'],
jaw_pose=param['jaw_pose'],
leye_pose=param['leye_pose'],
reye_pose=param['reye_pose'],
expression=param['expression'],
return_verts=True)
smpl_out = smpl_model(**model_forward_params)
smpl_verts = smpl_out.vertices[0].detach()
smpl_mesh = trimesh.Trimesh(smpl_verts,
smpl_model.faces,
process=False,
maintain_order=True)
return smpl_mesh
def save_obj_mesh(mesh_path, verts, faces):
file = open(mesh_path, 'w')
for v in verts:
file.write('v %.4f %.4f %.4f\n' % (v[0], v[1], v[2]))
for f in faces:
f_plus = f + 1
file.write('f %d %d %d\n' % (f_plus[0], f_plus[1], f_plus[2]))
file.close()
# https://github.com/ratcave/wavefront_reader
def read_mtlfile(fname):
materials = {}
with open(fname) as f:
lines = f.read().splitlines()
for line in lines:
if line:
split_line = line.strip().split(' ', 1)
if len(split_line) < 2:
continue
prefix, data = split_line[0], split_line[1]
if 'newmtl' in prefix:
material = {}
materials[data] = material
elif materials:
if data:
split_data = data.strip().split(' ')
# assume texture maps are in the same level
# WARNING: do not include space in your filename!!
if 'map' in prefix:
material[prefix] = split_data[-1].split('\\')[-1]
elif len(split_data) > 1:
material[prefix] = tuple(float(d) for d in split_data)
else:
try:
material[prefix] = int(data)
except ValueError:
material[prefix] = float(data)
return materials
def load_obj_mesh_mtl(mesh_file):
vertex_data = []
norm_data = []
uv_data = []
face_data = []
face_norm_data = []
face_uv_data = []
# face per material
face_data_mat = {}
face_norm_data_mat = {}
face_uv_data_mat = {}
# current material name
mtl_data = None
cur_mat = None
if isinstance(mesh_file, str):
f = open(mesh_file, "r")
else:
f = mesh_file
for line in f:
if isinstance(line, bytes):
line = line.decode("utf-8")
if line.startswith('#'):
continue
values = line.split()
if not values:
continue
if values[0] == 'v':
v = list(map(float, values[1:4]))
vertex_data.append(v)
elif values[0] == 'vn':
vn = list(map(float, values[1:4]))
norm_data.append(vn)
elif values[0] == 'vt':
vt = list(map(float, values[1:3]))
uv_data.append(vt)
elif values[0] == 'mtllib':
mtl_data = read_mtlfile(
mesh_file.replace(mesh_file.split('/')[-1], values[1]))
elif values[0] == 'usemtl':
cur_mat = values[1]
elif values[0] == 'f':
# local triangle data
l_face_data = []
l_face_uv_data = []
l_face_norm_data = []
# quad mesh
if len(values) > 4:
f = list(
map(
lambda x: int(x.split('/')[0]) if int(x.split('/')[0])
< 0 else int(x.split('/')[0]) - 1, values[1:4]))
l_face_data.append(f)
f = list(
map(
lambda x: int(x.split('/')[0])
if int(x.split('/')[0]) < 0 else int(x.split('/')[0]) -
1, [values[3], values[4], values[1]]))
l_face_data.append(f)
# tri mesh
else:
f = list(
map(
lambda x: int(x.split('/')[0]) if int(x.split('/')[0])
< 0 else int(x.split('/')[0]) - 1, values[1:4]))
l_face_data.append(f)
# deal with texture
if len(values[1].split('/')) >= 2:
# quad mesh
if len(values) > 4:
f = list(
map(
lambda x: int(x.split('/')[1])
if int(x.split('/')[1]) < 0 else int(
x.split('/')[1]) - 1, values[1:4]))
l_face_uv_data.append(f)
f = list(
map(
lambda x: int(x.split('/')[1])
if int(x.split('/')[1]) < 0 else int(
x.split('/')[1]) - 1,
[values[3], values[4], values[1]]))
l_face_uv_data.append(f)
# tri mesh
elif len(values[1].split('/')[1]) != 0:
f = list(
map(
lambda x: int(x.split('/')[1])
if int(x.split('/')[1]) < 0 else int(
x.split('/')[1]) - 1, values[1:4]))
l_face_uv_data.append(f)
# deal with normal
if len(values[1].split('/')) == 3:
# quad mesh
if len(values) > 4:
f = list(
map(
lambda x: int(x.split('/')[2])
if int(x.split('/')[2]) < 0 else int(
x.split('/')[2]) - 1, values[1:4]))
l_face_norm_data.append(f)
f = list(
map(
lambda x: int(x.split('/')[2])
if int(x.split('/')[2]) < 0 else int(
x.split('/')[2]) - 1,
[values[3], values[4], values[1]]))
l_face_norm_data.append(f)
# tri mesh
elif len(values[1].split('/')[2]) != 0:
f = list(
map(
lambda x: int(x.split('/')[2])
if int(x.split('/')[2]) < 0 else int(
x.split('/')[2]) - 1, values[1:4]))
l_face_norm_data.append(f)
face_data += l_face_data
face_uv_data += l_face_uv_data
face_norm_data += l_face_norm_data
if cur_mat is not None:
if cur_mat not in face_data_mat.keys():
face_data_mat[cur_mat] = []
if cur_mat not in face_uv_data_mat.keys():
face_uv_data_mat[cur_mat] = []
if cur_mat not in face_norm_data_mat.keys():
face_norm_data_mat[cur_mat] = []
face_data_mat[cur_mat] += l_face_data
face_uv_data_mat[cur_mat] += l_face_uv_data
face_norm_data_mat[cur_mat] += l_face_norm_data
vertices = np.array(vertex_data)
faces = np.array(face_data)
norms = np.array(norm_data)
norms = normalize_v3(norms)
face_normals = np.array(face_norm_data)
uvs = np.array(uv_data)
face_uvs = np.array(face_uv_data)
out_tuple = (vertices, faces, norms, face_normals, uvs, face_uvs)
if cur_mat is not None and mtl_data is not None:
for key in face_data_mat:
face_data_mat[key] = np.array(face_data_mat[key])
face_uv_data_mat[key] = np.array(face_uv_data_mat[key])
face_norm_data_mat[key] = np.array(face_norm_data_mat[key])
out_tuple += (face_data_mat, face_norm_data_mat, face_uv_data_mat,
mtl_data)
return out_tuple
def load_scan(mesh_file, with_normal=False, with_texture=False):
vertex_data = []
norm_data = []
uv_data = []
face_data = []
face_norm_data = []
face_uv_data = []
if isinstance(mesh_file, str):
f = open(mesh_file, "r")
else:
f = mesh_file
for line in f:
if isinstance(line, bytes):
line = line.decode("utf-8")
if line.startswith('#'):
continue
values = line.split()
if not values:
continue
if values[0] == 'v':
v = list(map(float, values[1:4]))
vertex_data.append(v)
elif values[0] == 'vn':
vn = list(map(float, values[1:4]))
norm_data.append(vn)
elif values[0] == 'vt':
vt = list(map(float, values[1:3]))
uv_data.append(vt)
elif values[0] == 'f':
# quad mesh
if len(values) > 4:
f = list(map(lambda x: int(x.split('/')[0]), values[1:4]))
face_data.append(f)
f = list(
map(lambda x: int(x.split('/')[0]),
[values[3], values[4], values[1]]))
face_data.append(f)
# tri mesh
else:
f = list(map(lambda x: int(x.split('/')[0]), values[1:4]))
face_data.append(f)
# deal with texture
if len(values[1].split('/')) >= 2:
# quad mesh
if len(values) > 4:
f = list(map(lambda x: int(x.split('/')[1]), values[1:4]))
face_uv_data.append(f)
f = list(
map(lambda x: int(x.split('/')[1]),
[values[3], values[4], values[1]]))
face_uv_data.append(f)
# tri mesh
elif len(values[1].split('/')[1]) != 0:
f = list(map(lambda x: int(x.split('/')[1]), values[1:4]))
face_uv_data.append(f)
# deal with normal
if len(values[1].split('/')) == 3:
# quad mesh
if len(values) > 4:
f = list(map(lambda x: int(x.split('/')[2]), values[1:4]))
face_norm_data.append(f)
f = list(
map(lambda x: int(x.split('/')[2]),
[values[3], values[4], values[1]]))
face_norm_data.append(f)
# tri mesh
elif len(values[1].split('/')[2]) != 0:
f = list(map(lambda x: int(x.split('/')[2]), values[1:4]))
face_norm_data.append(f)
vertices = np.array(vertex_data)
faces = np.array(face_data) - 1
if with_texture and with_normal:
uvs = np.array(uv_data)
face_uvs = np.array(face_uv_data) - 1
norms = np.array(norm_data)
if norms.shape[0] == 0:
norms = compute_normal(vertices, faces)
face_normals = faces
else:
norms = normalize_v3(norms)
face_normals = np.array(face_norm_data) - 1
return vertices, faces, norms, face_normals, uvs, face_uvs
if with_texture:
uvs = np.array(uv_data)
face_uvs = np.array(face_uv_data) - 1
return vertices, faces, uvs, face_uvs
if with_normal:
norms = np.array(norm_data)
norms = normalize_v3(norms)
face_normals = np.array(face_norm_data) - 1
return vertices, faces, norms, face_normals
return vertices, faces
def normalize_v3(arr):
''' Normalize a numpy array of 3 component vectors shape=(n,3) '''
lens = np.sqrt(arr[:, 0]**2 + arr[:, 1]**2 + arr[:, 2]**2)
eps = 0.00000001
lens[lens < eps] = eps
arr[:, 0] /= lens
arr[:, 1] /= lens
arr[:, 2] /= lens
return arr
def compute_normal(vertices, faces):
# Create a zeroed array with the same type and shape as our vertices i.e., per vertex normal
norm = np.zeros(vertices.shape, dtype=vertices.dtype)
# Create an indexed view into the vertex array using the array of three indices for triangles
tris = vertices[faces]
# Calculate the normal for all the triangles, by taking the cross product of the vectors v1-v0, and v2-v0 in each triangle
n = np.cross(tris[::, 1] - tris[::, 0], tris[::, 2] - tris[::, 0])
# n is now an array of normals per triangle. The length of each normal is dependent the vertices,
# we need to normalize these, so that our next step weights each normal equally.
normalize_v3(n)
# now we have a normalized array of normals, one per triangle, i.e., per triangle normals.
# But instead of one per triangle (i.e., flat shading), we add to each vertex in that triangle,
# the triangles' normal. Multiple triangles would then contribute to every vertex, so we need to normalize again afterwards.
# The cool part, we can actually add the normals through an indexed view of our (zeroed) per vertex normal array
norm[faces[:, 0]] += n
norm[faces[:, 1]] += n
norm[faces[:, 2]] += n
normalize_v3(norm)
return norm
def compute_normal_batch(vertices, faces):
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
vert_norm = torch.zeros(bs * nv, 3).type_as(vertices)
tris = face_vertices(vertices, faces)
face_norm = F.normalize(torch.cross(tris[:, :, 1] - tris[:, :, 0],
tris[:, :, 2] - tris[:, :, 0]),
dim=-1)
faces = (faces +
(torch.arange(bs).type_as(faces) * nv)[:, None, None]).view(
-1, 3)
vert_norm[faces[:, 0]] += face_norm.view(-1, 3)
vert_norm[faces[:, 1]] += face_norm.view(-1, 3)
vert_norm[faces[:, 2]] += face_norm.view(-1, 3)
vert_norm = F.normalize(vert_norm, dim=-1).view(bs, nv, 3)
return vert_norm
# compute tangent and bitangent
def compute_tangent(vertices, faces, normals, uvs, faceuvs):
# NOTE: this could be numerically unstable around [0,0,1]
# but other current solutions are pretty freaky somehow
c1 = np.cross(normals, np.array([0, 1, 0.0]))
tan = c1
normalize_v3(tan)
btan = np.cross(normals, tan)
# NOTE: traditional version is below
# pts_tris = vertices[faces]
# uv_tris = uvs[faceuvs]
# W = np.stack([pts_tris[::, 1] - pts_tris[::, 0], pts_tris[::, 2] - pts_tris[::, 0]],2)
# UV = np.stack([uv_tris[::, 1] - uv_tris[::, 0], uv_tris[::, 2] - uv_tris[::, 0]], 1)
# for i in range(W.shape[0]):
# W[i,::] = W[i,::].dot(np.linalg.inv(UV[i,::]))
# tan = np.zeros(vertices.shape, dtype=vertices.dtype)
# tan[faces[:,0]] += W[:,:,0]
# tan[faces[:,1]] += W[:,:,0]
# tan[faces[:,2]] += W[:,:,0]
# btan = np.zeros(vertices.shape, dtype=vertices.dtype)
# btan[faces[:,0]] += W[:,:,1]
# btan[faces[:,1]] += W[:,:,1]
# btan[faces[:,2]] += W[:,:,1]
# normalize_v3(tan)
# ndott = np.sum(normals*tan, 1, keepdims=True)
# tan = tan - ndott * normals
# normalize_v3(btan)
# normalize_v3(tan)
# tan[np.sum(np.cross(normals, tan) * btan, 1) < 0,:] *= -1.0
return tan, btan
|