File size: 9,772 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
"""Functions for interacting with segmentation masks in the COCO format.

The following terms are used in this module
    mask: a binary mask encoded as a 2D numpy array
    segm: a segmentation mask in one of the two COCO formats (polygon or RLE)
    polygon: COCO's polygon format
    RLE: COCO's run length encoding format
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np

import pycocotools.mask as mask_util


def GetDensePoseMask(Polys):
    MaskGen = np.zeros([256, 256])
    for i in range(1, 15):
        if (Polys[i - 1]):
            current_mask = mask_util.decode(Polys[i - 1])
            MaskGen[current_mask > 0] = i
    return MaskGen


def flip_segms(segms, height, width):
    """Left/right flip each mask in a list of masks."""
    def _flip_poly(poly, width):
        flipped_poly = np.array(poly)
        flipped_poly[0::2] = width - np.array(poly[0::2]) - 1
        return flipped_poly.tolist()

    def _flip_rle(rle, height, width):
        if 'counts' in rle and type(rle['counts']) == list:
            # Magic RLE format handling painfully discovered by looking at the
            # COCO API showAnns function.
            rle = mask_util.frPyObjects([rle], height, width)
        mask = mask_util.decode(rle)
        mask = mask[:, ::-1, :]
        rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
        return rle

    flipped_segms = []
    for segm in segms:
        if type(segm) == list:
            # Polygon format
            flipped_segms.append([_flip_poly(poly, width) for poly in segm])
        else:
            # RLE format
            assert type(segm) == dict
            flipped_segms.append(_flip_rle(segm, height, width))
    return flipped_segms


def polys_to_mask(polygons, height, width):
    """Convert from the COCO polygon segmentation format to a binary mask
    encoded as a 2D array of data type numpy.float32. The polygon segmentation
    is understood to be enclosed inside a height x width image. The resulting
    mask is therefore of shape (height, width).
    """
    rle = mask_util.frPyObjects(polygons, height, width)
    mask = np.array(mask_util.decode(rle), dtype=np.float32)
    # Flatten in case polygons was a list
    mask = np.sum(mask, axis=2)
    mask = np.array(mask > 0, dtype=np.float32)
    return mask


def mask_to_bbox(mask):
    """Compute the tight bounding box of a binary mask."""
    xs = np.where(np.sum(mask, axis=0) > 0)[0]
    ys = np.where(np.sum(mask, axis=1) > 0)[0]

    if len(xs) == 0 or len(ys) == 0:
        return None

    x0 = xs[0]
    x1 = xs[-1]
    y0 = ys[0]
    y1 = ys[-1]
    return np.array((x0, y0, x1, y1), dtype=np.float32)


def polys_to_mask_wrt_box(polygons, box, M):
    """Convert from the COCO polygon segmentation format to a binary mask
    encoded as a 2D array of data type numpy.float32. The polygon segmentation
    is understood to be enclosed in the given box and rasterized to an M x M
    mask. The resulting mask is therefore of shape (M, M).
    """
    w = box[2] - box[0]
    h = box[3] - box[1]

    w = np.maximum(w, 1)
    h = np.maximum(h, 1)

    polygons_norm = []
    for poly in polygons:
        p = np.array(poly, dtype=np.float32)
        p[0::2] = (p[0::2] - box[0]) * M / w
        p[1::2] = (p[1::2] - box[1]) * M / h
        polygons_norm.append(p)

    rle = mask_util.frPyObjects(polygons_norm, M, M)
    mask = np.array(mask_util.decode(rle), dtype=np.float32)
    # Flatten in case polygons was a list
    mask = np.sum(mask, axis=2)
    mask = np.array(mask > 0, dtype=np.float32)
    return mask


def polys_to_boxes(polys):
    """Convert a list of polygons into an array of tight bounding boxes."""
    boxes_from_polys = np.zeros((len(polys), 4), dtype=np.float32)
    for i in range(len(polys)):
        poly = polys[i]
        x0 = min(min(p[::2]) for p in poly)
        x1 = max(max(p[::2]) for p in poly)
        y0 = min(min(p[1::2]) for p in poly)
        y1 = max(max(p[1::2]) for p in poly)
        boxes_from_polys[i, :] = [x0, y0, x1, y1]

    return boxes_from_polys


def rle_mask_voting(top_masks, all_masks, all_dets, iou_thresh, binarize_thresh, method='AVG'):
    """Returns new masks (in correspondence with `top_masks`) by combining
    multiple overlapping masks coming from the pool of `all_masks`. Two methods
    for combining masks are supported: 'AVG' uses a weighted average of
    overlapping mask pixels; 'UNION' takes the union of all mask pixels.
    """
    if len(top_masks) == 0:
        return

    all_not_crowd = [False] * len(all_masks)
    top_to_all_overlaps = mask_util.iou(top_masks, all_masks, all_not_crowd)
    decoded_all_masks = [np.array(mask_util.decode(rle), dtype=np.float32) for rle in all_masks]
    decoded_top_masks = [np.array(mask_util.decode(rle), dtype=np.float32) for rle in top_masks]
    all_boxes = all_dets[:, :4].astype(np.int32)
    all_scores = all_dets[:, 4]

    # Fill box support with weights
    mask_shape = decoded_all_masks[0].shape
    mask_weights = np.zeros((len(all_masks), mask_shape[0], mask_shape[1]))
    for k in range(len(all_masks)):
        ref_box = all_boxes[k]
        x_0 = max(ref_box[0], 0)
        x_1 = min(ref_box[2] + 1, mask_shape[1])
        y_0 = max(ref_box[1], 0)
        y_1 = min(ref_box[3] + 1, mask_shape[0])
        mask_weights[k, y_0:y_1, x_0:x_1] = all_scores[k]
    mask_weights = np.maximum(mask_weights, 1e-5)

    top_segms_out = []
    for k in range(len(top_masks)):
        # Corner case of empty mask
        if decoded_top_masks[k].sum() == 0:
            top_segms_out.append(top_masks[k])
            continue

        inds_to_vote = np.where(top_to_all_overlaps[k] >= iou_thresh)[0]
        # Only matches itself
        if len(inds_to_vote) == 1:
            top_segms_out.append(top_masks[k])
            continue

        masks_to_vote = [decoded_all_masks[i] for i in inds_to_vote]
        if method == 'AVG':
            ws = mask_weights[inds_to_vote]
            soft_mask = np.average(masks_to_vote, axis=0, weights=ws)
            mask = np.array(soft_mask > binarize_thresh, dtype=np.uint8)
        elif method == 'UNION':
            # Any pixel that's on joins the mask
            soft_mask = np.sum(masks_to_vote, axis=0)
            mask = np.array(soft_mask > 1e-5, dtype=np.uint8)
        else:
            raise NotImplementedError('Method {} is unknown'.format(method))
        rle = mask_util.encode(np.array(mask[:, :, np.newaxis], order='F'))[0]
        top_segms_out.append(rle)

    return top_segms_out


def rle_mask_nms(masks, dets, thresh, mode='IOU'):
    """Performs greedy non-maximum suppression based on an overlap measurement
    between masks. The type of measurement is determined by `mode` and can be
    either 'IOU' (standard intersection over union) or 'IOMA' (intersection over
    mininum area).
    """
    if len(masks) == 0:
        return []
    if len(masks) == 1:
        return [0]

    if mode == 'IOU':
        # Computes ious[m1, m2] = area(intersect(m1, m2)) / area(union(m1, m2))
        all_not_crowds = [False] * len(masks)
        ious = mask_util.iou(masks, masks, all_not_crowds)
    elif mode == 'IOMA':
        # Computes ious[m1, m2] = area(intersect(m1, m2)) / min(area(m1), area(m2))
        all_crowds = [True] * len(masks)
        # ious[m1, m2] = area(intersect(m1, m2)) / area(m2)
        ious = mask_util.iou(masks, masks, all_crowds)
        # ... = max(area(intersect(m1, m2)) / area(m2),
        #           area(intersect(m2, m1)) / area(m1))
        ious = np.maximum(ious, ious.transpose())
    elif mode == 'CONTAINMENT':
        # Computes ious[m1, m2] = area(intersect(m1, m2)) / area(m2)
        # Which measures how much m2 is contained inside m1
        all_crowds = [True] * len(masks)
        ious = mask_util.iou(masks, masks, all_crowds)
    else:
        raise NotImplementedError('Mode {} is unknown'.format(mode))

    scores = dets[:, 4]
    order = np.argsort(-scores)

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        ovr = ious[i, order[1:]]
        inds_to_keep = np.where(ovr <= thresh)[0]
        order = order[inds_to_keep + 1]

    return keep


def rle_masks_to_boxes(masks):
    """Computes the bounding box of each mask in a list of RLE encoded masks."""
    if len(masks) == 0:
        return []

    decoded_masks = [np.array(mask_util.decode(rle), dtype=np.float32) for rle in masks]

    def get_bounds(flat_mask):
        inds = np.where(flat_mask > 0)[0]
        return inds.min(), inds.max()

    boxes = np.zeros((len(decoded_masks), 4))
    keep = [True] * len(decoded_masks)
    for i, mask in enumerate(decoded_masks):
        if mask.sum() == 0:
            keep[i] = False
            continue
        flat_mask = mask.sum(axis=0)
        x0, x1 = get_bounds(flat_mask)
        flat_mask = mask.sum(axis=1)
        y0, y1 = get_bounds(flat_mask)
        boxes[i, :] = (x0, y0, x1, y1)

    return boxes, np.where(keep)[0]