Spaces:
Running
on
L40S
Running
on
L40S
File size: 13,117 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
"""Keypoint utilities (somewhat specific to COCO keypoints)."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torch.cuda.comm
# from core.config import cfg
# import utils.blob as blob_utils
def get_keypoints():
"""Get the COCO keypoints and their left/right flip coorespondence map."""
# Keypoints are not available in the COCO json for the test split, so we
# provide them here.
keypoints = [
'nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder',
'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip',
'left_knee', 'right_knee', 'left_ankle', 'right_ankle'
]
keypoint_flip_map = {
'left_eye': 'right_eye',
'left_ear': 'right_ear',
'left_shoulder': 'right_shoulder',
'left_elbow': 'right_elbow',
'left_wrist': 'right_wrist',
'left_hip': 'right_hip',
'left_knee': 'right_knee',
'left_ankle': 'right_ankle'
}
return keypoints, keypoint_flip_map
def get_person_class_index():
"""Index of the person class in COCO."""
return 1
def flip_keypoints(keypoints, keypoint_flip_map, keypoint_coords, width):
"""Left/right flip keypoint_coords. keypoints and keypoint_flip_map are
accessible from get_keypoints().
"""
flipped_kps = keypoint_coords.copy()
for lkp, rkp in keypoint_flip_map.items():
lid = keypoints.index(lkp)
rid = keypoints.index(rkp)
flipped_kps[:, :, lid] = keypoint_coords[:, :, rid]
flipped_kps[:, :, rid] = keypoint_coords[:, :, lid]
# Flip x coordinates
flipped_kps[:, 0, :] = width - flipped_kps[:, 0, :] - 1
# Maintain COCO convention that if visibility == 0, then x, y = 0
inds = np.where(flipped_kps[:, 2, :] == 0)
flipped_kps[inds[0], 0, inds[1]] = 0
return flipped_kps
def flip_heatmaps(heatmaps):
"""Flip heatmaps horizontally."""
keypoints, flip_map = get_keypoints()
heatmaps_flipped = heatmaps.copy()
for lkp, rkp in flip_map.items():
lid = keypoints.index(lkp)
rid = keypoints.index(rkp)
heatmaps_flipped[:, rid, :, :] = heatmaps[:, lid, :, :]
heatmaps_flipped[:, lid, :, :] = heatmaps[:, rid, :, :]
heatmaps_flipped = heatmaps_flipped[:, :, :, ::-1]
return heatmaps_flipped
def heatmaps_to_keypoints(maps, rois):
"""Extract predicted keypoint locations from heatmaps. Output has shape
(#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob)
for each keypoint.
"""
# This function converts a discrete image coordinate in a HEATMAP_SIZE x
# HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain
# consistency with keypoints_to_heatmap_labels by using the conversion from
# Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a
# continuous coordinate.
offset_x = rois[:, 0]
offset_y = rois[:, 1]
widths = rois[:, 2] - rois[:, 0]
heights = rois[:, 3] - rois[:, 1]
widths = np.maximum(widths, 1)
heights = np.maximum(heights, 1)
widths_ceil = np.ceil(widths)
heights_ceil = np.ceil(heights)
# NCHW to NHWC for use with OpenCV
maps = np.transpose(maps, [0, 2, 3, 1])
min_size = cfg.KRCNN.INFERENCE_MIN_SIZE
xy_preds = np.zeros((len(rois), 4, cfg.KRCNN.NUM_KEYPOINTS), dtype=np.float32)
for i in range(len(rois)):
if min_size > 0:
roi_map_width = int(np.maximum(widths_ceil[i], min_size))
roi_map_height = int(np.maximum(heights_ceil[i], min_size))
else:
roi_map_width = widths_ceil[i]
roi_map_height = heights_ceil[i]
width_correction = widths[i] / roi_map_width
height_correction = heights[i] / roi_map_height
roi_map = cv2.resize(
maps[i], (roi_map_width, roi_map_height), interpolation=cv2.INTER_CUBIC
)
# Bring back to CHW
roi_map = np.transpose(roi_map, [2, 0, 1])
roi_map_probs = scores_to_probs(roi_map.copy())
w = roi_map.shape[2]
for k in range(cfg.KRCNN.NUM_KEYPOINTS):
pos = roi_map[k, :, :].argmax()
x_int = pos % w
y_int = (pos - x_int) // w
assert (roi_map_probs[k, y_int, x_int] == roi_map_probs[k, :, :].max())
x = (x_int + 0.5) * width_correction
y = (y_int + 0.5) * height_correction
xy_preds[i, 0, k] = x + offset_x[i]
xy_preds[i, 1, k] = y + offset_y[i]
xy_preds[i, 2, k] = roi_map[k, y_int, x_int]
xy_preds[i, 3, k] = roi_map_probs[k, y_int, x_int]
return xy_preds
def keypoints_to_heatmap_labels(keypoints, rois):
"""Encode keypoint location in the target heatmap for use in
SoftmaxWithLoss.
"""
# Maps keypoints from the half-open interval [x1, x2) on continuous image
# coordinates to the closed interval [0, HEATMAP_SIZE - 1] on discrete image
# coordinates. We use the continuous <-> discrete conversion from Heckbert
# 1990 ("What is the coordinate of a pixel?"): d = floor(c) and c = d + 0.5,
# where d is a discrete coordinate and c is a continuous coordinate.
assert keypoints.shape[2] == cfg.KRCNN.NUM_KEYPOINTS
shape = (len(rois), cfg.KRCNN.NUM_KEYPOINTS)
heatmaps = blob_utils.zeros(shape)
weights = blob_utils.zeros(shape)
offset_x = rois[:, 0]
offset_y = rois[:, 1]
scale_x = cfg.KRCNN.HEATMAP_SIZE / (rois[:, 2] - rois[:, 0])
scale_y = cfg.KRCNN.HEATMAP_SIZE / (rois[:, 3] - rois[:, 1])
for kp in range(keypoints.shape[2]):
vis = keypoints[:, 2, kp] > 0
x = keypoints[:, 0, kp].astype(np.float32)
y = keypoints[:, 1, kp].astype(np.float32)
# Since we use floor below, if a keypoint is exactly on the roi's right
# or bottom boundary, we shift it in by eps (conceptually) to keep it in
# the ground truth heatmap.
x_boundary_inds = np.where(x == rois[:, 2])[0]
y_boundary_inds = np.where(y == rois[:, 3])[0]
x = (x - offset_x) * scale_x
x = np.floor(x)
if len(x_boundary_inds) > 0:
x[x_boundary_inds] = cfg.KRCNN.HEATMAP_SIZE - 1
y = (y - offset_y) * scale_y
y = np.floor(y)
if len(y_boundary_inds) > 0:
y[y_boundary_inds] = cfg.KRCNN.HEATMAP_SIZE - 1
valid_loc = np.logical_and(
np.logical_and(x >= 0, y >= 0),
np.logical_and(x < cfg.KRCNN.HEATMAP_SIZE, y < cfg.KRCNN.HEATMAP_SIZE)
)
valid = np.logical_and(valid_loc, vis)
valid = valid.astype(np.int32)
lin_ind = y * cfg.KRCNN.HEATMAP_SIZE + x
heatmaps[:, kp] = lin_ind * valid
weights[:, kp] = valid
return heatmaps, weights
def scores_to_probs(scores):
"""Transforms CxHxW of scores to probabilities spatially."""
channels = scores.shape[0]
for c in range(channels):
temp = scores[c, :, :]
max_score = temp.max()
temp = np.exp(temp - max_score) / np.sum(np.exp(temp - max_score))
scores[c, :, :] = temp
return scores
def nms_oks(kp_predictions, rois, thresh):
"""Nms based on kp predictions."""
scores = np.mean(kp_predictions[:, 2, :], axis=1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
ovr = compute_oks(kp_predictions[i], rois[i], kp_predictions[order[1:]], rois[order[1:]])
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def compute_oks(src_keypoints, src_roi, dst_keypoints, dst_roi):
"""Compute OKS for predicted keypoints wrt gt_keypoints.
src_keypoints: 4xK
src_roi: 4x1
dst_keypoints: Nx4xK
dst_roi: Nx4
"""
sigmas = np.array(
[.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]
) / 10.0
vars = (sigmas * 2)**2
# area
src_area = (src_roi[2] - src_roi[0] + 1) * (src_roi[3] - src_roi[1] + 1)
# measure the per-keypoint distance if keypoints visible
dx = dst_keypoints[:, 0, :] - src_keypoints[0, :]
dy = dst_keypoints[:, 1, :] - src_keypoints[1, :]
e = (dx**2 + dy**2) / vars / (src_area + np.spacing(1)) / 2
e = np.sum(np.exp(-e), axis=1) / e.shape[1]
return e
def get_max_preds(batch_heatmaps):
'''
get predictions from score maps
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
'''
assert isinstance(batch_heatmaps, np.ndarray), \
'batch_heatmaps should be numpy.ndarray'
assert batch_heatmaps.ndim == 4, 'batch_images should be 4-ndim'
batch_size = batch_heatmaps.shape[0]
num_joints = batch_heatmaps.shape[1]
width = batch_heatmaps.shape[3]
heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1))
idx = np.argmax(heatmaps_reshaped, 2)
maxvals = np.amax(heatmaps_reshaped, 2)
maxvals = maxvals.reshape((batch_size, num_joints, 1))
idx = idx.reshape((batch_size, num_joints, 1))
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
preds[:, :, 0] = (preds[:, :, 0]) % width
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
pred_mask = pred_mask.astype(np.float32)
preds *= pred_mask
return preds, maxvals
def generate_3d_integral_preds_tensor(heatmaps, num_joints, x_dim, y_dim, z_dim):
assert isinstance(heatmaps, torch.Tensor)
if z_dim is not None:
heatmaps = heatmaps.reshape((heatmaps.shape[0], num_joints, z_dim, y_dim, x_dim))
accu_x = heatmaps.sum(dim=2)
accu_x = accu_x.sum(dim=2)
accu_y = heatmaps.sum(dim=2)
accu_y = accu_y.sum(dim=3)
accu_z = heatmaps.sum(dim=3)
accu_z = accu_z.sum(dim=3)
accu_x = accu_x * torch.cuda.comm.broadcast(
torch.arange(x_dim, dtype=torch.float32), devices=[accu_x.device.index]
)[0]
accu_y = accu_y * torch.cuda.comm.broadcast(
torch.arange(y_dim, dtype=torch.float32), devices=[accu_y.device.index]
)[0]
accu_z = accu_z * torch.cuda.comm.broadcast(
torch.arange(z_dim, dtype=torch.float32), devices=[accu_z.device.index]
)[0]
accu_x = accu_x.sum(dim=2, keepdim=True)
accu_y = accu_y.sum(dim=2, keepdim=True)
accu_z = accu_z.sum(dim=2, keepdim=True)
else:
heatmaps = heatmaps.reshape((heatmaps.shape[0], num_joints, y_dim, x_dim))
accu_x = heatmaps.sum(dim=2)
accu_y = heatmaps.sum(dim=3)
accu_x = accu_x * torch.cuda.comm.broadcast(
torch.arange(x_dim, dtype=torch.float32), devices=[accu_x.device.index]
)[0]
accu_y = accu_y * torch.cuda.comm.broadcast(
torch.arange(y_dim, dtype=torch.float32), devices=[accu_y.device.index]
)[0]
accu_x = accu_x.sum(dim=2, keepdim=True)
accu_y = accu_y.sum(dim=2, keepdim=True)
accu_z = None
return accu_x, accu_y, accu_z
# integral pose estimation
# https://github.com/JimmySuen/integral-human-pose/blob/99647e40ec93dfa4e3b6a1382c935cebb35440da/pytorch_projects/common_pytorch/common_loss/integral.py#L28
def softmax_integral_tensor(preds, num_joints, hm_width, hm_height, hm_depth=None):
# global soft max
preds = preds.reshape((preds.shape[0], num_joints, -1))
preds = F.softmax(preds, 2)
output_3d = False if hm_depth is None else True
# integrate heatmap into joint location
if output_3d:
x, y, z = generate_3d_integral_preds_tensor(
preds, num_joints, hm_width, hm_height, hm_depth
)
# x = x / float(hm_width) - 0.5
# y = y / float(hm_height) - 0.5
# z = z / float(hm_depth) - 0.5
preds = torch.cat((x, y, z), dim=2)
# preds = preds.reshape((preds.shape[0], num_joints * 3))
else:
x, y, _ = generate_3d_integral_preds_tensor(
preds, num_joints, hm_width, hm_height, z_dim=None
)
# x = x / float(hm_width) - 0.5
# y = y / float(hm_height) - 0.5
preds = torch.cat((x, y), dim=2)
# preds = preds.reshape((preds.shape[0], num_joints * 2))
return preds
|