File size: 9,892 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""
This file contains functions that are used to perform data augmentation.
"""
import torch
import numpy as np
import cv2
import skimage.transform
from PIL import Image

from lib.pymafx.core import constants


def get_transform(center, scale, res, rot=0):
    """Generate transformation matrix."""
    h = 200 * scale
    t = np.zeros((3, 3))
    t[0, 0] = float(res[1]) / h
    t[1, 1] = float(res[0]) / h
    t[0, 2] = res[1] * (-float(center[0]) / h + .5)
    t[1, 2] = res[0] * (-float(center[1]) / h + .5)
    t[2, 2] = 1
    if not rot == 0:
        t = np.dot(get_rot_transf(res, rot), t)
    return t


def get_rot_transf(res, rot):
    """Generate rotation transformation matrix."""
    if rot == 0:
        return np.identity(3)
    rot = -rot    # To match direction of rotation from cropping
    rot_mat = np.zeros((3, 3))
    rot_rad = rot * np.pi / 180
    sn, cs = np.sin(rot_rad), np.cos(rot_rad)
    rot_mat[0, :2] = [cs, -sn]
    rot_mat[1, :2] = [sn, cs]
    rot_mat[2, 2] = 1
    # Need to rotate around center
    t_mat = np.eye(3)
    t_mat[0, 2] = -res[1] / 2
    t_mat[1, 2] = -res[0] / 2
    t_inv = t_mat.copy()
    t_inv[:2, 2] *= -1
    rot_transf = np.dot(t_inv, np.dot(rot_mat, t_mat))
    return rot_transf


def transform(pt, center, scale, res, invert=0, rot=0):
    """Transform pixel location to different reference."""
    t = get_transform(center, scale, res, rot=rot)
    if invert:
        t = np.linalg.inv(t)
    new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
    new_pt = np.dot(t, new_pt)
    return new_pt[:2].astype(int) + 1


def transform_pts(coords, center, scale, res, invert=0, rot=0):
    """Transform coordinates (N x 2) to different reference."""
    new_coords = coords.copy()
    for p in range(coords.shape[0]):
        new_coords[p, 0:2] = transform(coords[p, 0:2], center, scale, res, invert, rot)
    return new_coords


def crop(img, center, scale, res, rot=0):
    """Crop image according to the supplied bounding box."""
    # Upper left point
    ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1
    # Bottom right point
    br = np.array(transform([res[0] + 1, res[1] + 1], center, scale, res, invert=1)) - 1

    # Padding so that when rotated proper amount of context is included
    pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2)
    if not rot == 0:
        ul -= pad
        br += pad

    new_shape = [br[1] - ul[1], br[0] - ul[0]]
    if len(img.shape) > 2:
        new_shape += [img.shape[2]]
    new_img = np.zeros(new_shape)

    # Range to fill new array
    new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0]
    new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1]
    # Range to sample from original image
    old_x = max(0, ul[0]), min(len(img[0]), br[0])
    old_y = max(0, ul[1]), min(len(img), br[1])

    new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]]

    if not rot == 0:
        # Remove padding
        new_img = skimage.transform.rotate(new_img, rot).astype(np.uint8)
        new_img = new_img[pad:-pad, pad:-pad]

    new_img_resized = np.array(Image.fromarray(new_img.astype(np.uint8)).resize(res))
    return new_img_resized, new_img, new_shape


def uncrop(img, center, scale, orig_shape, rot=0, is_rgb=True):
    """'Undo' the image cropping/resizing.
    This function is used when evaluating mask/part segmentation.
    """
    res = img.shape[:2]
    # Upper left point
    ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1
    # Bottom right point
    br = np.array(transform([res[0] + 1, res[1] + 1], center, scale, res, invert=1)) - 1
    # size of cropped image
    crop_shape = [br[1] - ul[1], br[0] - ul[0]]

    new_shape = [br[1] - ul[1], br[0] - ul[0]]
    if len(img.shape) > 2:
        new_shape += [img.shape[2]]
    new_img = np.zeros(orig_shape, dtype=np.uint8)
    # Range to fill new array
    new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0]
    new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1]
    # Range to sample from original image
    old_x = max(0, ul[0]), min(orig_shape[1], br[0])
    old_y = max(0, ul[1]), min(orig_shape[0], br[1])
    img = np.array(Image.fromarray(img.astype(np.uint8)).resize(crop_shape))
    new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]]
    return new_img


def rot_aa(aa, rot):
    """Rotate axis angle parameters."""
    # pose parameters
    R = np.array(
        [
            [np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
            [np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], [0, 0, 1]
        ]
    )
    # find the rotation of the body in camera frame
    per_rdg, _ = cv2.Rodrigues(aa)
    # apply the global rotation to the global orientation
    resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg))
    aa = (resrot.T)[0]
    return aa


def flip_img(img):
    """Flip rgb images or masks.
    channels come last, e.g. (256,256,3).
    """
    img = np.fliplr(img)
    return img


def flip_kp(kp, is_smpl=False, type='body'):
    """Flip keypoints."""
    assert type in ['body', 'hand', 'face', 'feet']
    if type == 'body':
        if len(kp) == 24:
            if is_smpl:
                flipped_parts = constants.SMPL_JOINTS_FLIP_PERM
            else:
                flipped_parts = constants.J24_FLIP_PERM
        elif len(kp) == 49:
            if is_smpl:
                flipped_parts = constants.SMPL_J49_FLIP_PERM
            else:
                flipped_parts = constants.J49_FLIP_PERM
    elif type == 'hand':
        if len(kp) == 21:
            flipped_parts = constants.SINGLE_HAND_FLIP_PERM
        elif len(kp) == 42:
            flipped_parts = constants.LRHAND_FLIP_PERM
    elif type == 'face':
        flipped_parts = constants.FACE_FLIP_PERM
    elif type == 'feet':
        flipped_parts = constants.FEEF_FLIP_PERM

    kp = kp[flipped_parts]
    kp[:, 0] = -kp[:, 0]
    return kp


def flip_pose(pose):
    """Flip pose.
    The flipping is based on SMPL parameters.
    """
    flipped_parts = constants.SMPL_POSE_FLIP_PERM
    pose = pose[flipped_parts]
    # we also negate the second and the third dimension of the axis-angle
    pose[1::3] = -pose[1::3]
    pose[2::3] = -pose[2::3]
    return pose


def flip_aa(pose):
    """Flip aa.
    """
    # we also negate the second and the third dimension of the axis-angle
    if len(pose.shape) == 1:
        pose[1::3] = -pose[1::3]
        pose[2::3] = -pose[2::3]
    elif len(pose.shape) == 2:
        pose[:, 1::3] = -pose[:, 1::3]
        pose[:, 2::3] = -pose[:, 2::3]
    else:
        raise NotImplementedError
    return pose


def normalize_2d_kp(kp_2d, crop_size=224, inv=False):
    # Normalize keypoints between -1, 1
    if not inv:
        ratio = 1.0 / crop_size
        kp_2d = 2.0 * kp_2d * ratio - 1.0
    else:
        ratio = 1.0 / crop_size
        kp_2d = (kp_2d + 1.0) / (2 * ratio)

    return kp_2d


def j2d_processing(kp, transf):
    """Process gt 2D keypoints and apply transforms."""
    # nparts = kp.shape[1]
    bs, npart = kp.shape[:2]
    kp_pad = torch.cat([kp, torch.ones((bs, npart, 1)).to(kp)], dim=-1)
    kp_new = torch.bmm(transf, kp_pad.transpose(1, 2))
    kp_new = kp_new.transpose(1, 2)
    kp_new[:, :, :-1] = 2. * kp_new[:, :, :-1] / constants.IMG_RES - 1.
    return kp_new[:, :, :2]


def generate_heatmap(joints, heatmap_size, sigma=1, joints_vis=None):
    '''
    param joints:  [num_joints, 3]
    param joints_vis: [num_joints, 3]
    return: target, target_weight(1: visible, 0: invisible)
    '''
    num_joints = joints.shape[0]
    device = joints.device
    cur_device = torch.device(device.type, device.index)
    if not hasattr(heatmap_size, '__len__'):
        # width  height
        heatmap_size = [heatmap_size, heatmap_size]
    assert len(heatmap_size) == 2
    target_weight = np.ones((num_joints, 1), dtype=np.float32)
    if joints_vis is not None:
        target_weight[:, 0] = joints_vis[:, 0]
    target = torch.zeros(
        (num_joints, heatmap_size[1], heatmap_size[0]), dtype=torch.float32, device=cur_device
    )

    tmp_size = sigma * 3

    for joint_id in range(num_joints):
        mu_x = int(joints[joint_id][0] * heatmap_size[0] + 0.5)
        mu_y = int(joints[joint_id][1] * heatmap_size[1] + 0.5)
        # Check that any part of the gaussian is in-bounds
        ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
        br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
        if ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] \
                or br[0] < 0 or br[1] < 0:
            # If not, just return the image as is
            target_weight[joint_id] = 0
            continue

        # # Generate gaussian
        size = 2 * tmp_size + 1
        # x = np.arange(0, size, 1, np.float32)
        # y = x[:, np.newaxis]
        # x0 = y0 = size // 2
        # # The gaussian is not normalized, we want the center value to equal 1
        # g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
        # g = torch.from_numpy(g.astype(np.float32))

        x = torch.arange(0, size, dtype=torch.float32, device=cur_device)
        y = x.unsqueeze(-1)
        x0 = y0 = size // 2
        # The gaussian is not normalized, we want the center value to equal 1
        g = torch.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2))

        # Usable gaussian range
        g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0]
        g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1]
        # Image range
        img_x = max(0, ul[0]), min(br[0], heatmap_size[0])
        img_y = max(0, ul[1]), min(br[1], heatmap_size[1])

        v = target_weight[joint_id]
        if v > 0.5:
            target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \
                g[g_y[0]:g_y[1], g_x[0]:g_x[1]]

    return target, target_weight