File size: 5,853 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import numpy as np
import copy
import cv2
from scipy.io import loadmat
import scipy.spatial.distance
import os


class DensePoseMethods:
    def __init__(self):
        #
        ALP_UV = loadmat(os.path.join('./data/UV_data', 'UV_Processed.mat'))
        self.FaceIndices = np.array(ALP_UV['All_FaceIndices']).squeeze()
        self.FacesDensePose = ALP_UV['All_Faces'] - 1
        self.U_norm = ALP_UV['All_U_norm'].squeeze()
        self.V_norm = ALP_UV['All_V_norm'].squeeze()
        self.All_vertices = ALP_UV['All_vertices'][0]
        ## Info to compute symmetries.
        self.SemanticMaskSymmetries = [0, 1, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 14]
        self.Index_Symmetry_List = [
            1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23
        ]
        UV_symmetry_filename = os.path.join('./data/UV_data', 'UV_symmetry_transforms.mat')
        self.UV_symmetry_transformations = loadmat(UV_symmetry_filename)

    def get_symmetric_densepose(self, I, U, V, x, y, Mask):
        ### This is a function to get the mirror symmetric UV labels.
        Labels_sym = np.zeros(I.shape)
        U_sym = np.zeros(U.shape)
        V_sym = np.zeros(V.shape)
        ###
        for i in (range(24)):
            if i + 1 in I:
                Labels_sym[I == (i + 1)] = self.Index_Symmetry_List[i]
                jj = np.where(I == (i + 1))
                ###
                U_loc = (U[jj] * 255).astype(np.int64)
                V_loc = (V[jj] * 255).astype(np.int64)
                ###
                V_sym[jj] = self.UV_symmetry_transformations['V_transforms'][0, i][V_loc, U_loc]
                U_sym[jj] = self.UV_symmetry_transformations['U_transforms'][0, i][V_loc, U_loc]
        ##
        Mask_flip = np.fliplr(Mask)
        Mask_flipped = np.zeros(Mask.shape)
        #
        for i in (range(14)):
            Mask_flipped[Mask_flip == (i + 1)] = self.SemanticMaskSymmetries[i + 1]
        #
        [y_max, x_max] = Mask_flip.shape
        y_sym = y
        x_sym = x_max - x
        #
        return Labels_sym, U_sym, V_sym, x_sym, y_sym, Mask_flipped

    def barycentric_coordinates_exists(self, P0, P1, P2, P):
        u = P1 - P0
        v = P2 - P0
        w = P - P0
        #
        vCrossW = np.cross(v, w)
        vCrossU = np.cross(v, u)
        if (np.dot(vCrossW, vCrossU) < 0):
            return False
        #
        uCrossW = np.cross(u, w)
        uCrossV = np.cross(u, v)
        #
        if (np.dot(uCrossW, uCrossV) < 0):
            return False
        #
        denom = np.sqrt((uCrossV**2).sum())
        r = np.sqrt((vCrossW**2).sum()) / denom
        t = np.sqrt((uCrossW**2).sum()) / denom
        #
        return ((r <= 1) & (t <= 1) & (r + t <= 1))

    def barycentric_coordinates(self, P0, P1, P2, P):
        u = P1 - P0
        v = P2 - P0
        w = P - P0
        #
        vCrossW = np.cross(v, w)
        vCrossU = np.cross(v, u)
        #
        uCrossW = np.cross(u, w)
        uCrossV = np.cross(u, v)
        #
        denom = np.sqrt((uCrossV**2).sum())
        r = np.sqrt((vCrossW**2).sum()) / denom
        t = np.sqrt((uCrossW**2).sum()) / denom
        #
        return (1 - (r + t), r, t)

    def IUV2FBC(self, I_point, U_point, V_point):
        P = [U_point, V_point, 0]
        FaceIndicesNow = np.where(self.FaceIndices == I_point)
        FacesNow = self.FacesDensePose[FaceIndicesNow]
        #
        P_0 = np.vstack(
            (
                self.U_norm[FacesNow][:, 0], self.V_norm[FacesNow][:, 0],
                np.zeros(self.U_norm[FacesNow][:, 0].shape)
            )
        ).transpose()
        P_1 = np.vstack(
            (
                self.U_norm[FacesNow][:, 1], self.V_norm[FacesNow][:, 1],
                np.zeros(self.U_norm[FacesNow][:, 1].shape)
            )
        ).transpose()
        P_2 = np.vstack(
            (
                self.U_norm[FacesNow][:, 2], self.V_norm[FacesNow][:, 2],
                np.zeros(self.U_norm[FacesNow][:, 2].shape)
            )
        ).transpose()
        #

        for i, [P0, P1, P2] in enumerate(zip(P_0, P_1, P_2)):
            if (self.barycentric_coordinates_exists(P0, P1, P2, P)):
                [bc1, bc2, bc3] = self.barycentric_coordinates(P0, P1, P2, P)
                return (FaceIndicesNow[0][i], bc1, bc2, bc3)
        #
        # If the found UV is not inside any faces, select the vertex that is closest!
        #
        D1 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :],
                                          P_0[:, 0:2]).squeeze()
        D2 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :],
                                          P_1[:, 0:2]).squeeze()
        D3 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :],
                                          P_2[:, 0:2]).squeeze()
        #
        minD1 = D1.min()
        minD2 = D2.min()
        minD3 = D3.min()
        #
        if ((minD1 < minD2) & (minD1 < minD3)):
            return (FaceIndicesNow[0][np.argmin(D1)], 1., 0., 0.)
        elif ((minD2 < minD1) & (minD2 < minD3)):
            return (FaceIndicesNow[0][np.argmin(D2)], 0., 1., 0.)
        else:
            return (FaceIndicesNow[0][np.argmin(D3)], 0., 0., 1.)

    def FBC2PointOnSurface(self, FaceIndex, bc1, bc2, bc3, Vertices):
        ##
        Vert_indices = self.All_vertices[self.FacesDensePose[FaceIndex]] - 1
        ##
        p = Vertices[Vert_indices[0], :] * bc1 + \
            Vertices[Vert_indices[1], :] * bc2 + \
            Vertices[Vert_indices[2], :] * bc3
        ##
        return (p)