Spaces:
Running
on
L40S
Running
on
L40S
File size: 5,853 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import copy
import cv2
from scipy.io import loadmat
import scipy.spatial.distance
import os
class DensePoseMethods:
def __init__(self):
#
ALP_UV = loadmat(os.path.join('./data/UV_data', 'UV_Processed.mat'))
self.FaceIndices = np.array(ALP_UV['All_FaceIndices']).squeeze()
self.FacesDensePose = ALP_UV['All_Faces'] - 1
self.U_norm = ALP_UV['All_U_norm'].squeeze()
self.V_norm = ALP_UV['All_V_norm'].squeeze()
self.All_vertices = ALP_UV['All_vertices'][0]
## Info to compute symmetries.
self.SemanticMaskSymmetries = [0, 1, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 14]
self.Index_Symmetry_List = [
1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23
]
UV_symmetry_filename = os.path.join('./data/UV_data', 'UV_symmetry_transforms.mat')
self.UV_symmetry_transformations = loadmat(UV_symmetry_filename)
def get_symmetric_densepose(self, I, U, V, x, y, Mask):
### This is a function to get the mirror symmetric UV labels.
Labels_sym = np.zeros(I.shape)
U_sym = np.zeros(U.shape)
V_sym = np.zeros(V.shape)
###
for i in (range(24)):
if i + 1 in I:
Labels_sym[I == (i + 1)] = self.Index_Symmetry_List[i]
jj = np.where(I == (i + 1))
###
U_loc = (U[jj] * 255).astype(np.int64)
V_loc = (V[jj] * 255).astype(np.int64)
###
V_sym[jj] = self.UV_symmetry_transformations['V_transforms'][0, i][V_loc, U_loc]
U_sym[jj] = self.UV_symmetry_transformations['U_transforms'][0, i][V_loc, U_loc]
##
Mask_flip = np.fliplr(Mask)
Mask_flipped = np.zeros(Mask.shape)
#
for i in (range(14)):
Mask_flipped[Mask_flip == (i + 1)] = self.SemanticMaskSymmetries[i + 1]
#
[y_max, x_max] = Mask_flip.shape
y_sym = y
x_sym = x_max - x
#
return Labels_sym, U_sym, V_sym, x_sym, y_sym, Mask_flipped
def barycentric_coordinates_exists(self, P0, P1, P2, P):
u = P1 - P0
v = P2 - P0
w = P - P0
#
vCrossW = np.cross(v, w)
vCrossU = np.cross(v, u)
if (np.dot(vCrossW, vCrossU) < 0):
return False
#
uCrossW = np.cross(u, w)
uCrossV = np.cross(u, v)
#
if (np.dot(uCrossW, uCrossV) < 0):
return False
#
denom = np.sqrt((uCrossV**2).sum())
r = np.sqrt((vCrossW**2).sum()) / denom
t = np.sqrt((uCrossW**2).sum()) / denom
#
return ((r <= 1) & (t <= 1) & (r + t <= 1))
def barycentric_coordinates(self, P0, P1, P2, P):
u = P1 - P0
v = P2 - P0
w = P - P0
#
vCrossW = np.cross(v, w)
vCrossU = np.cross(v, u)
#
uCrossW = np.cross(u, w)
uCrossV = np.cross(u, v)
#
denom = np.sqrt((uCrossV**2).sum())
r = np.sqrt((vCrossW**2).sum()) / denom
t = np.sqrt((uCrossW**2).sum()) / denom
#
return (1 - (r + t), r, t)
def IUV2FBC(self, I_point, U_point, V_point):
P = [U_point, V_point, 0]
FaceIndicesNow = np.where(self.FaceIndices == I_point)
FacesNow = self.FacesDensePose[FaceIndicesNow]
#
P_0 = np.vstack(
(
self.U_norm[FacesNow][:, 0], self.V_norm[FacesNow][:, 0],
np.zeros(self.U_norm[FacesNow][:, 0].shape)
)
).transpose()
P_1 = np.vstack(
(
self.U_norm[FacesNow][:, 1], self.V_norm[FacesNow][:, 1],
np.zeros(self.U_norm[FacesNow][:, 1].shape)
)
).transpose()
P_2 = np.vstack(
(
self.U_norm[FacesNow][:, 2], self.V_norm[FacesNow][:, 2],
np.zeros(self.U_norm[FacesNow][:, 2].shape)
)
).transpose()
#
for i, [P0, P1, P2] in enumerate(zip(P_0, P_1, P_2)):
if (self.barycentric_coordinates_exists(P0, P1, P2, P)):
[bc1, bc2, bc3] = self.barycentric_coordinates(P0, P1, P2, P)
return (FaceIndicesNow[0][i], bc1, bc2, bc3)
#
# If the found UV is not inside any faces, select the vertex that is closest!
#
D1 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :],
P_0[:, 0:2]).squeeze()
D2 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :],
P_1[:, 0:2]).squeeze()
D3 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :],
P_2[:, 0:2]).squeeze()
#
minD1 = D1.min()
minD2 = D2.min()
minD3 = D3.min()
#
if ((minD1 < minD2) & (minD1 < minD3)):
return (FaceIndicesNow[0][np.argmin(D1)], 1., 0., 0.)
elif ((minD2 < minD1) & (minD2 < minD3)):
return (FaceIndicesNow[0][np.argmin(D2)], 0., 1., 0.)
else:
return (FaceIndicesNow[0][np.argmin(D3)], 0., 0., 1.)
def FBC2PointOnSurface(self, FaceIndex, bc1, bc2, bc3, Vertices):
##
Vert_indices = self.All_vertices[self.FacesDensePose[FaceIndex]] - 1
##
p = Vertices[Vert_indices[0], :] * bc1 + \
Vertices[Vert_indices[1], :] * bc2 + \
Vertices[Vert_indices[2], :] * bc3
##
return (p)
|