Spaces:
Sleeping
Sleeping
File size: 23,307 Bytes
a4737a3 53862cb 33ba3d3 53862cb 33ba3d3 53862cb a4737a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
import warnings
warnings.filterwarnings("ignore")
from diffusers import StableDiffusionPipeline, DDIMInverseScheduler, DDIMScheduler
import torch
from typing import Optional
from tqdm import tqdm
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import gc
import gradio as gr
import numpy as np
import os
import pickle
from transformers import CLIPImageProcessor
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
import argparse
weights = {
'down': {
4096: 0.0,
1024: 1.0,
256: 1.0,
},
'mid': {
64: 1.0,
},
'up': {
256: 1.0,
1024: 1.0,
4096: 0.0,
}
}
num_inference_steps = 10
model_id = "stabilityai/stable-diffusion-2-1-base"
pipe = StableDiffusionPipeline.from_pretrained(model_id).to("cuda")
inverse_scheduler = DDIMInverseScheduler.from_pretrained(model_id, subfolder="scheduler")
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to("cuda")
feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
should_stop = False
def save_state_to_file(state):
filename = "state.pkl"
with open(filename, 'wb') as f:
pickle.dump(state, f)
return filename
def load_state_from_file(filename):
with open(filename, 'rb') as f:
state = pickle.load(f)
return state
def stop_reconstruct():
global should_stop
should_stop = True
def reconstruct(input_img, caption):
img = input_img
cond_prompt_embeds = pipe.encode_prompt(prompt=caption, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
uncond_prompt_embeds = pipe.encode_prompt(prompt="", device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
prompt_embeds_combined = torch.cat([uncond_prompt_embeds, cond_prompt_embeds])
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((512, 512)),
torchvision.transforms.ToTensor()
])
loaded_image = transform(img).to("cuda").unsqueeze(0)
if loaded_image.shape[1] == 4:
loaded_image = loaded_image[:,:3,:,:]
with torch.no_grad():
encoded_image = pipe.vae.encode(loaded_image*2 - 1)
real_image_latents = pipe.vae.config.scaling_factor * encoded_image.latent_dist.sample()
guidance_scale = 1
inverse_scheduler.set_timesteps(num_inference_steps, device="cuda")
timesteps = inverse_scheduler.timesteps
latents = real_image_latents
inversed_latents = []
with torch.no_grad():
replace_attention_processor(pipe.unet, True)
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), desc="Inference steps"):
inversed_latents.append(latents)
latent_model_input = torch.cat([latents] * 2)
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds_combined,
cross_attention_kwargs=None,
return_dict=False,
)[0]
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = inverse_scheduler.step(noise_pred, t, latents, return_dict=False)[0]
# initial state
real_image_initial_latents = latents
W_values = uncond_prompt_embeds.repeat(num_inference_steps, 1, 1)
QT = nn.Parameter(W_values.clone())
guidance_scale = 7.5
scheduler.set_timesteps(num_inference_steps, device="cuda")
timesteps = scheduler.timesteps
optimizer = torch.optim.AdamW([QT], lr=0.008)
pipe.vae.eval()
pipe.vae.requires_grad_(False)
pipe.unet.eval()
pipe.unet.requires_grad_(False)
last_loss = 1
for epoch in range(50):
gc.collect()
torch.cuda.empty_cache()
if last_loss < 0.02:
break
elif last_loss < 0.03:
for param_group in optimizer.param_groups:
param_group['lr'] = 0.003
elif last_loss < 0.035:
for param_group in optimizer.param_groups:
param_group['lr'] = 0.006
intermediate_values = real_image_initial_latents.clone()
for i in range(num_inference_steps):
latents = intermediate_values.detach().clone()
t = timesteps[i]
prompt_embeds = torch.cat([QT[i].unsqueeze(0), cond_prompt_embeds.detach()])
latent_model_input = torch.cat([latents] * 2)
noise_pred_model = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=None,
return_dict=False,
)[0]
noise_pred_uncond, noise_pred_text = noise_pred_model.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
intermediate_values = scheduler.step(noise_pred, t, latents, return_dict=False)[0]
loss = F.mse_loss(inversed_latents[len(timesteps) - 1 - i].detach(), intermediate_values, reduction="mean")
last_loss = loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
global should_stop
if should_stop:
should_stop = False
break
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
image = (image / 2.0 + 0.5).clamp(0.0, 1.0)
safety_checker_input = feature_extractor(image, return_tensors="pt", do_rescale=False).to("cuda")
image = safety_checker(images=[image], clip_input=safety_checker_input.pixel_values.to("cuda"))[0]
image_np = image[0].squeeze(0).float().permute(1,2,0).detach().cpu().numpy()
image_np = (image_np * 255).astype(np.uint8)
yield image_np, caption, [caption, real_image_initial_latents, QT]
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
image = (image / 2.0 + 0.5).clamp(0.0, 1.0)
safety_checker_input = feature_extractor(image, return_tensors="pt", do_rescale=False).to("cuda")
image = safety_checker(images=[image], clip_input=safety_checker_input.pixel_values.to("cuda"))[0]
image_np = image[0].squeeze(0).float().permute(1,2,0).detach().cpu().numpy()
image_np = (image_np * 255).astype(np.uint8)
yield image_np, caption, [caption, real_image_initial_latents, QT]
class AttnReplaceProcessor(AttnProcessor2_0):
def __init__(self, replace_all, weight):
super().__init__()
self.replace_all = replace_all
self.weight = weight
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
*args,
**kwargs,
) -> torch.FloatTensor:
residual = hidden_states
is_cross = not encoder_hidden_states is None
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, _, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_scores = attn.scale * torch.bmm(query, key.transpose(-1, -2))
dimension_squared = hidden_states.shape[1]
if not is_cross and (self.replace_all):
ucond_attn_scores_src, ucond_attn_scores_dst, attn_scores_src, attn_scores_dst = attention_scores.chunk(4)
attn_scores_dst.copy_(self.weight[dimension_squared] * attn_scores_src + (1.0 - self.weight[dimension_squared]) * attn_scores_dst)
ucond_attn_scores_dst.copy_(self.weight[dimension_squared] * ucond_attn_scores_src + (1.0 - self.weight[dimension_squared]) * ucond_attn_scores_dst)
attention_probs = attention_scores.softmax(dim=-1)
del attention_scores
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
del attention_probs
hidden_states = attn.to_out[0](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def replace_attention_processor(unet, clear = False):
for name, module in unet.named_modules():
if 'attn1' in name and 'to' not in name:
layer_type = name.split('.')[0].split('_')[0]
if not clear:
if layer_type == 'down':
module.processor = AttnReplaceProcessor(True, weights['down'])
elif layer_type == 'mid':
module.processor = AttnReplaceProcessor(True, weights['mid'])
elif layer_type == 'up':
module.processor = AttnReplaceProcessor(True, weights['up'])
else:
module.processor = AttnReplaceProcessor(False, 0.0)
def apply_prompt(meta_data, new_prompt):
caption, real_image_initial_latents, QT = meta_data
inference_steps = len(QT)
cond_prompt_embeds = pipe.encode_prompt(prompt=caption, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
# uncond_prompt_embeds = pipe.encode_prompt(prompt=caption, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
new_prompt_embeds = pipe.encode_prompt(prompt=new_prompt, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
guidance_scale = 7.5
scheduler.set_timesteps(inference_steps, device="cuda")
timesteps = scheduler.timesteps
latents = torch.cat([real_image_initial_latents] * 2)
with torch.no_grad():
replace_attention_processor(pipe.unet)
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), desc="Inference steps"):
modified_prompt_embeds = torch.cat([QT[i].unsqueeze(0), QT[i].unsqueeze(0), cond_prompt_embeds, new_prompt_embeds])
latent_model_input = torch.cat([latents] * 2)
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=modified_prompt_embeds,
cross_attention_kwargs=None,
return_dict=False,
)[0]
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = scheduler.step(noise_pred, t, latents, return_dict=False)[0]
replace_attention_processor(pipe.unet, True)
image = pipe.vae.decode(latents[1].unsqueeze(0) / pipe.vae.config.scaling_factor, return_dict=False)[0]
image = (image / 2.0 + 0.5).clamp(0.0, 1.0)
safety_checker_input = feature_extractor(image, return_tensors="pt", do_rescale=False).to("cuda")
image = safety_checker(images=[image], clip_input=safety_checker_input.pixel_values.to("cuda"))[0]
image_np = image[0].squeeze(0).float().permute(1,2,0).detach().cpu().numpy()
image_np = (image_np * 255).astype(np.uint8)
return image_np
def on_image_change(filepath):
# Extract the filename without extension
filename = os.path.splitext(os.path.basename(filepath))[0]
# Check if the filename is "example1" or "example2"
if filename in ["example1", "example2", "example3", "example4"]:
meta_data_raw = load_state_from_file(f"assets/{filename}.pkl")
_, _, QT_raw = meta_data_raw
global num_inference_steps
num_inference_steps = len(QT_raw)
scale_value = 7
new_prompt = ""
if filename == "example1":
scale_value = 7
new_prompt = "a photo of a tree, summer, colourful"
elif filename == "example2":
scale_value = 8
new_prompt = "a photo of a panda, two ears, white background"
elif filename == "example3":
scale_value = 7
new_prompt = "a realistic photo of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds"
elif filename == "example4":
scale_value = 7
new_prompt = "a photo of plastic bottle on some sand, beach background, sky background"
update_scale(scale_value)
img = apply_prompt(meta_data_raw, new_prompt)
return filepath, img, meta_data_raw, num_inference_steps, scale_value, scale_value
def update_value(value, key, res):
global weights
weights[key][res] = value
def update_step(value):
global num_inference_steps
num_inference_steps = value
def update_scale(scale):
values = [1.0] * 7
if scale == 9:
return values
reduction_steps = (9 - scale) * 0.5
for i in range(4): # There are 4 positions to reduce symmetrically
if reduction_steps >= 1:
values[i] = 0.0
values[-(i + 1)] = 0.0
reduction_steps -= 1
elif reduction_steps > 0:
values[i] = 0.5
values[-(i + 1)] = 0.5
break
global weights
index = 0
for outer_key, inner_dict in weights.items():
for inner_key in inner_dict:
inner_dict[inner_key] = values[index]
index += 1
return weights['down'][4096], weights['down'][1024], weights['down'][256], weights['mid'][64], weights['up'][256], weights['up'][1024], weights['up'][4096]
with gr.Blocks() as demo:
gr.Markdown(
'''
<div style="text-align: center;">
<div style="display: flex; justify-content: center;">
<img src="https://github.com/user-attachments/assets/55a38e74-ab93-4d80-91c8-0fa6130af45a" alt="Logo">
</div>
<h1>Out of Focus 1.0</h1>
<p style="font-size:16px;">Out of AI presents a flexible tool to manipulate your images. This is our first version of Image modification tool through prompt manipulation by reconstruction through diffusion inversion process</p>
</div>
<br>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://www.buymeacoffee.com/outofai" target="_blank"><img src="https://img.shields.io/badge/-buy_me_a%C2%A0coffee-red?logo=buy-me-a-coffee" alt="Buy Me A Coffee"></a>  
<a href="https://twitter.com/OutofAi" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Ashleigh%20Watson"></a>  
<a href="https://twitter.com/banterless_ai" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Alex%20Nasa"></a>
</div>
<br>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<p>
<a href="https://huggingface.co/spaces/fffiloni/OutofFocus?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
</a> to skip the queue and enjoy faster inference on the GPU of your choice
</p>
</div>
'''
)
with gr.Row():
with gr.Column():
with gr.Row():
example_input = gr.Image(height=512, width=512, type="filepath", visible=False)
image_input = gr.Image(height=512, width=512, type="pil", label="Upload Source Image")
steps_slider = gr.Slider(minimum=5, maximum=25, step=5, value=num_inference_steps, label="Steps", info="Number of inference steps required to reconstruct and modify the image")
prompt_input = gr.Textbox(label="Prompt", info="Give an initial prompt in details, describing the image")
reconstruct_button = gr.Button("Reconstruct")
stop_button = gr.Button("Stop", variant="stop", interactive=False)
with gr.Column():
reconstructed_image = gr.Image(type="pil", label="Reconstructed")
with gr.Row():
invisible_slider = gr.Slider(minimum=0, maximum=9, step=1, value=7, visible=False)
interpolate_slider = gr.Slider(minimum=0, maximum=9, step=1, value=7, label="Cross-Attention Influence", info="Scales the related influence the source image has on the target image")
with gr.Row():
new_prompt_input = gr.Textbox(label="New Prompt", interactive=False, info="Manipulate the image by changing the prompt or word addition at the end, achieve the best results by swapping words instead of adding or removing in between")
with gr.Row():
apply_button = gr.Button("Generate Vision", variant="primary", interactive=False)
with gr.Row():
with gr.Accordion(label="Advanced Options", open=False):
gr.Markdown(
'''
<div style="text-align: center;">
<h1>Weight Adjustment</h1>
<p style="font-size:16px;">Specific Cross-Attention Influence weights can be manually modified for given resolutions (1.0 = Fully Source Attn 0.0 = Fully Target Attn)</p>
</div>
'''
)
down_slider_4096 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['down'][4096], label="Self-Attn Down 64x64")
down_slider_1024 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['down'][1024], label="Self-Attn Down 32x32")
down_slider_256 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['down'][256], label="Self-Attn Down 16x16")
mid_slider_64 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['mid'][64], label="Self-Attn Mid 8x8")
up_slider_256 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['up'][256], label="Self-Attn Up 16x16")
up_slider_1024 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['up'][1024], label="Self-Attn Up 32x32")
up_slider_4096 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['up'][4096], label="Self-Attn Up 64x64")
with gr.Row():
show_case = gr.Examples(
examples=[
["assets/example4.png", "a photo of plastic bottle on a rock, mountain background, sky background", "a photo of plastic bottle on some sand, beach background, sky background"],
["assets/example1.png", "a photo of a tree, spring, foggy", "a photo of a tree, summer, colourful"],
["assets/example2.png", "a photo of a cat, two ears, white background", "a photo of a panda, two ears, white background"],
["assets/example3.png", "a digital illustration of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds", "a realistic photo of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds"],
],
inputs=[example_input, prompt_input, new_prompt_input],
label=None
)
meta_data = gr.State()
example_input.change(
fn=on_image_change,
inputs=example_input,
outputs=[image_input, reconstructed_image, meta_data, steps_slider, invisible_slider, interpolate_slider]
).then(
lambda: gr.update(interactive=True),
outputs=apply_button
).then(
lambda: gr.update(interactive=True),
outputs=new_prompt_input
)
steps_slider.release(update_step, inputs=steps_slider)
interpolate_slider.release(update_scale, inputs=interpolate_slider, outputs=[down_slider_4096, down_slider_1024, down_slider_256, mid_slider_64, up_slider_256, up_slider_1024, up_slider_4096 ])
invisible_slider.change(update_scale, inputs=invisible_slider, outputs=[down_slider_4096, down_slider_1024, down_slider_256, mid_slider_64, up_slider_256, up_slider_1024, up_slider_4096 ])
up_slider_4096.change(update_value, inputs=[up_slider_4096, gr.State('up'), gr.State(4096)])
up_slider_1024.change(update_value, inputs=[up_slider_1024, gr.State('up'), gr.State(1024)])
up_slider_256.change(update_value, inputs=[up_slider_256, gr.State('up'), gr.State(256)])
down_slider_4096.change(update_value, inputs=[down_slider_4096, gr.State('down'), gr.State(4096)])
down_slider_1024.change(update_value, inputs=[down_slider_1024, gr.State('down'), gr.State(1024)])
down_slider_256.change(update_value, inputs=[down_slider_256, gr.State('down'), gr.State(256)])
mid_slider_64.change(update_value, inputs=[mid_slider_64, gr.State('mid'), gr.State(64)])
reconstruct_button.click(reconstruct, inputs=[image_input, prompt_input], outputs=[reconstructed_image, new_prompt_input, meta_data]).then(
lambda: gr.update(interactive=True),
outputs=reconstruct_button
).then(
lambda: gr.update(interactive=True),
outputs=new_prompt_input
).then(
lambda: gr.update(interactive=True),
outputs=apply_button
).then(
lambda: gr.update(interactive=False),
outputs=stop_button
)
reconstruct_button.click(
lambda: gr.update(interactive=False),
outputs=reconstruct_button
)
reconstruct_button.click(
lambda: gr.update(interactive=True),
outputs=stop_button
)
reconstruct_button.click(
lambda: gr.update(interactive=False),
outputs=apply_button
)
stop_button.click(
lambda: gr.update(interactive=False),
outputs=stop_button
)
apply_button.click(apply_prompt, inputs=[meta_data, new_prompt_input], outputs=reconstructed_image)
stop_button.click(stop_reconstruct)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
args = parser.parse_args()
demo.queue()
demo.launch(share=args.share) |