File size: 17,940 Bytes
2cdb96e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import imageio.v3 as iio
import cv2
import numpy as np
import imageio
from copy import deepcopy
import os
import tyro
import glob
import imageio
import numpy as np
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from safetensors.torch import load_file
import kiui
from kiui.cam import orbit_camera
from core.options import AllConfigs, Options
from core.models import LGM
import time
from core.utils import get_rays, grid_distortion, orbit_camera_jitter
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
USE_INTERPOLATION = True # set to false to disable interpolation
MAX_RUNS = 100
VIDEO_FPS = 30
opt = tyro.cli(AllConfigs)
# model
model = LGM(opt)
# resume pretrained checkpoint
if opt.resume is not None:
if opt.resume.endswith('safetensors'):
ckpt = load_file(opt.resume, device='cpu')
else:
ckpt = torch.load(opt.resume, map_location='cpu')
model.load_state_dict(ckpt, strict=False)
print(f'[INFO] Loaded checkpoint from {opt.resume}')
else:
print(f'[WARN] model randomly initialized, are you sure?')
# device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.half().to(device)
model.eval()
bg_color = torch.tensor([255, 255, 255], dtype=torch.float32, device="cuda") / 255.
rays_embeddings = model.prepare_default_rays(device)
rays_embeddings = torch.cat([rays_embeddings for _ in range(opt.num_frames)])
interp_opt = deepcopy(opt)
interp_opt.num_frames = 4
model_interp = LGM(interp_opt)
# resume pretrained checkpoint
if interp_opt.interpresume is not None:
if interp_opt.interpresume.endswith('safetensors'):
ckpt = load_file(interp_opt.interpresume, device='cpu')
else:
ckpt = torch.load(interp_opt.interpresume, map_location='cpu')
model_interp.load_state_dict(ckpt, strict=False)
print(f'[INFO] Loaded Interp checkpoint from {interp_opt.interpresume}')
else:
print(f'[WARN] model_interp randomly initialized, are you sure?')
# device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_interp = model_interp.half().to(device)
model_interp.eval()
interp_rays_embeddings = model_interp.prepare_default_rays(device)
interp_rays_embeddings = torch.cat([interp_rays_embeddings for _ in range(interp_opt.num_frames)])
tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy))
proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device)
proj_matrix[0, 0] = 1 / tan_half_fov
proj_matrix[1, 1] = 1 / tan_half_fov
proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
proj_matrix[2, 3] = 1
def interpolate_tensors(tensor):
# Extract the first and last tensors along the first dimension (B)
start_tensor = tensor[0] # shape [4, 3, 256, 256]
end_tensor = tensor[-1] # shape [4, 3, 256, 256]
tensor_interp = deepcopy(tensor)
# Iterate over the range from 1 to second-last index
for i in range(1, tensor.shape[0] - 1):
# Calculate the weight for interpolation
weight = (i - 0) / (tensor.shape[0] - 1)
# Interpolate between start_tensor and end_tensor
tensor_interp[i] = torch.lerp(start_tensor, end_tensor, weight)
return tensor_interp
def process_eval_video(frames, video_path, T, start_t=0, downsample_rate=1):
L = frames.shape[0]
vid_name =video_path.split('/')[-1].split('.')[0]
total_frames = L//downsample_rate
print(f'{start_t} / {total_frames}')
frames = [frames[x] for x in range(frames.shape[0])]
V = opt.num_input_views
img_TV = []
for t in range(T):
t += start_t
t = min(t, L//downsample_rate-1)
t*=downsample_rate
img = frames[t]
img = cv2.resize(img, (256, 256), interpolation=cv2.INTER_AREA)
img = img.astype(np.float32) / 255.0
img_V = []
for v in range(V):
img_V.append(img)
img_TV.append(np.stack(img_V, axis=0))
return np.stack(img_TV, axis=0), L//downsample_rate- start_t
def load_mv_img(name, img_dir):
img_list = []
for v in range(4):
img = kiui.read_image(os.path.join(img_dir, name + f'_{v:03d}.png'), mode='uint8')
img = cv2.resize(img, (256, 256), interpolation=cv2.INTER_AREA)
img = img / 255.
img_list.append(img)
return np.stack(img_list, axis=0)
# process function
def process(opt: Options, path):
name = os.path.splitext(os.path.basename(path))[0]
print(f'[INFO] Processing {path} --> {name}')
os.makedirs(opt.workspace, exist_ok=True)
frames = iio.imread(path)
img_dir = opt.workspace
mv_image = load_mv_img(name, img_dir)
print(iio.immeta(path))
FPS = int(iio.immeta(path)['fps'])
downsample_rate = FPS // 15 if FPS > 15 else 1 # default reconstruction fps 15
with torch.inference_mode():
with torch.autocast(device_type='cuda', dtype=torch.float16):
start_t = 0
gaussians_all_frame_all_run = []
gaussians_all_frame_all_run_w_interp = []
for run_idx in range(MAX_RUNS):
ref_video, end_t = process_eval_video(frames, path, opt.num_frames, start_t, downsample_rate=downsample_rate)
ref_video[:, 1:] = mv_image[None, 1:] # repeat
input_image = torch.from_numpy(ref_video).reshape([-1, *ref_video.shape[2:]]).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
end_time = time.time()
gaussians_all_frame = model.forward_gaussians(input_image)
print(f"Forward pass takes {time.time()-end_time} s")
B, T, V = 1, gaussians_all_frame.shape[0]//opt.batch_size, opt.num_views
gaussians_all_frame = gaussians_all_frame.reshape(B, T, *gaussians_all_frame.shape[1:])
if run_idx > 0:
gaussians_all_frame_wo_inter = gaussians_all_frame[:, 1:max(end_t, 1)]
else:
gaussians_all_frame_wo_inter = gaussians_all_frame
if gaussians_all_frame_wo_inter.shape[1] > 0 and USE_INTERPOLATION:
# render multiview video
render_img_TV = []
for t in range(gaussians_all_frame.shape[1]):
render_img_V = []
for v, azi in enumerate(np.arange(0, 360, 90)):
gaussians = gaussians_all_frame[:, t]
cam_poses = torch.from_numpy(orbit_camera(0, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
rendered_image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)['image']
rendered_image = rendered_image.squeeze(1)
rendered_image = F.interpolate(rendered_image, (256, 256))
rendered_image = rendered_image.permute(0,2,3,1).contiguous().float().cpu().numpy() # B H W C
render_img_V.append(rendered_image)
render_img_V = np.concatenate(render_img_V, axis=0) # V H W C
render_img_TV.append(render_img_V)
render_img_TV = np.stack(render_img_TV, axis=0) # T V H W C
ref_video = np.concatenate([np.stack([ref_video[ttt] for _ in range(opt.interpolate_rate)], 0) for ttt in range(ref_video.shape[0])], 0)
for tt in range(gaussians_all_frame_wo_inter.shape[1] -1 ):
curr_ref_video = deepcopy( ref_video[ tt * opt.interpolate_rate: tt * opt.interpolate_rate + interp_opt.num_frames ])
curr_ref_video[0, 1:] = render_img_TV[tt, 1:]
curr_ref_video[-1, 1:] = render_img_TV[tt+1, 1:]
curr_ref_video = torch.from_numpy(curr_ref_video).float().to(
device) # [4, 3, 256, 256]
images_input_interp = interpolate_tensors(curr_ref_video)
curr_ref_video[1:-1, :] = images_input_interp[1:-1, :]
input_image_interp = curr_ref_video.reshape([-1, *curr_ref_video.shape[2:]]).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
input_image_interp = F.interpolate(input_image_interp, size=(interp_opt.input_size, interp_opt.input_size), mode='bilinear',
align_corners=False)
input_image_interp = TF.normalize(input_image_interp, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
input_image_interp = torch.cat([input_image_interp, interp_rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
end_time = time.time()
gaussians_interp_all_frame = model_interp.forward_gaussians(input_image_interp)
print(f"Interpolate forward pass takes {time.time()-end_time} s")
B, T, V = 1, gaussians_interp_all_frame.shape[0] // opt.batch_size, opt.num_views
gaussians_interp_all_frame = gaussians_interp_all_frame.reshape(B, T, *gaussians_interp_all_frame.shape[1:])
if tt > 0:
gaussians_interp_all_frame = gaussians_interp_all_frame[:, 1:]
gaussians_all_frame_all_run_w_interp.append(gaussians_interp_all_frame)
gaussians_all_frame_all_run.append(gaussians_all_frame_wo_inter)
start_t += opt.num_frames -1
mv_image = []
for v, azi in enumerate(np.arange(0, 360, 90)):
gaussians = gaussians_all_frame_wo_inter[:, -1]
cam_poses = torch.from_numpy(orbit_camera(0, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
rendered_image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)['image']
rendered_image = rendered_image.squeeze(1)
rendered_image = F.interpolate(rendered_image, (256, 256))
rendered_image = rendered_image.permute(0,2,3,1).contiguous().float().cpu().numpy()
mv_image.append(rendered_image)
mv_image = np.concatenate(mv_image, axis=0)
elif gaussians_all_frame_wo_inter.shape[1] > 0:
gaussians_all_frame_all_run.append(gaussians_all_frame_wo_inter)
start_t += opt.num_frames -1
else:
break
gaussians_all_frame_wo_interp = torch.cat(gaussians_all_frame_all_run, dim=1)
if USE_INTERPOLATION:
gaussians_all_frame_w_interp = torch.cat(gaussians_all_frame_all_run_w_interp, dim=1)
if USE_INTERPOLATION:
zip_dump = zip(["wo_interp", "w_interp"], [gaussians_all_frame_wo_interp, gaussians_all_frame_w_interp])
else:
zip_dump = zip(["wo_interp"], [gaussians_all_frame_wo_interp])
for sv_name, gaussians_all_frame in zip_dump:
if sv_name == "w_interp":
ANIM_FPS = FPS / downsample_rate * gaussians_all_frame_w_interp.shape[1] / gaussians_all_frame_wo_interp.shape[1]
else:
ANIM_FPS = FPS / downsample_rate
print(f"{sv_name} | input video fps: {FPS} | downsample rate: {downsample_rate} | animation fps: {ANIM_FPS} | output video fps: {VIDEO_FPS}")
render_img_TV = []
for t in range(gaussians_all_frame.shape[1]):
render_img_V = []
for v, azi in enumerate(np.arange(0, 360, 90)):
gaussians = gaussians_all_frame[:, t]
cam_poses = torch.from_numpy(orbit_camera(0, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
result = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)
image = result['image']
alpha = result['alpha']
render_img_V.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
render_img_V = np.concatenate(render_img_V, axis=2)
render_img_TV.append(render_img_V)
render_img_TV = np.concatenate(render_img_TV, axis=0)
images = []
azimuth = np.arange(0, 360, 1*30/VIDEO_FPS, dtype=np.int32)
elevation = 0
t = 0
delta_t = ANIM_FPS / VIDEO_FPS
for azi in azimuth:
if azi in [0, 90, 180, 270]:
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
for _ in range(45):
gaussians = gaussians_all_frame[:, int(t) % gaussians_all_frame.shape[1]]
t += delta_t
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
else:
gaussians = gaussians_all_frame[:, int(t) % gaussians_all_frame.shape[1]]
t += delta_t
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
images = np.concatenate(images, axis=0)
torch.cuda.empty_cache()
imageio.mimwrite(os.path.join(opt.workspace, f'{sv_name}_{name}_fixed.mp4'), render_img_TV, fps=ANIM_FPS)
print("Fixed video saved.")
imageio.mimwrite(os.path.join(opt.workspace, f'{sv_name}_{name}.mp4'), images, fps=VIDEO_FPS)
print("Stop video saved.")
assert opt.test_path is not None
if os.path.isdir(opt.test_path):
file_paths = glob.glob(os.path.join(opt.test_path, "*"))
else:
file_paths = [opt.test_path]
for path in sorted(file_paths):
process(opt, path)
|