File size: 4,715 Bytes
d2e8c3f
 
 
b04e321
d2e8c3f
 
bc16e8f
 
97b862c
3520c6c
 
 
 
aa3cb1c
3520c6c
bc16e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba29991
103784a
ba29991
aa1dc20
 
 
bc16e8f
 
 
 
d7be7dc
 
2ca90d5
d7be7dc
 
 
 
 
 
 
 
bc16e8f
 
adb9d22
cf30bfe
aa1dc20
 
cf30bfe
 
bc16e8f
 
 
 
d027ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa1dc20
bc16e8f
aa1dc20
bc16e8f
 
 
c576d1e
d027ebe
c576d1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d027ebe
bc16e8f
 
08a027e
bc16e8f
 
d3660c2
9ccd6e5
bc16e8f
 
 
c576d1e
 
bc16e8f
 
 
 
 
9ccd6e5
 
 
bc16e8f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch

print(torch.__version__)
print(torch.version.cuda)
print(torch.cuda.is_available())

import os, subprocess
import uuid, tempfile
from glob import glob

env_list = os.environ['PATH'].split(':')
env_list.append('/usr/local/cuda/bin')
os.environ['PATH'] = ':'.join(env_list)
os.environ['TORCH_CUDA_ARCH_LIST'] = '8.6'

import gradio as gr
from huggingface_hub import snapshot_download

os.makedirs("pretrained", exist_ok=True)
snapshot_download(
    repo_id = "jiawei011/L4GM",
    local_dir = "./pretrained"
)

# Folder containing example images
examples_folder = "data_test"

# Retrieve all file paths in the folder
video_examples = [
    os.path.join(examples_folder, file)
    for file in os.listdir(examples_folder)
    if os.path.isfile(os.path.join(examples_folder, file))
]


def generate(input_video):

    unique_id = str(uuid.uuid4())
    
    workdir = f"results_{unique_id}"
    recon_model = "pretrained/recon.safetensors"
    interp_model = "pretrained/interp.safetensors"
    num_frames = 16
    test_path = input_video
    
    try:
        # Run the inference command
        subprocess.run(
            [
                "python", "infer_3d.py", "big",
                "--workspace", f"{workdir}",
                "--resume", f"{recon_model}",
                "--num_frames", f"1",
                "--test_path", f"{test_path}",
            ],
            check=True
        )

        subprocess.run(
            [
                "python", "infer_4d.py", "big",
                "--workspace", f"{workdir}",
                "--resume", f"{recon_model}",
                "--interpresume", f"{interp_model}",
                "--num_frames", f"{num_frames}",
                "--test_path", f"{test_path}",
            ],
            check=True
        )

        # Get all .mp4 files in the workdir
        output_videos = glob(os.path.join(workdir, "*.mp4"))
        print("Found videos:", output_videos)
    
        # Check if the 5th video exists
        if len(output_videos) < 5:
            raise IndexError("Less than 5 .mp4 files found in the workdir.")
    
        # Get the 5th video
        selected_video = output_videos[4]
        print("Selected video:", selected_video)
    
        # Create a new temporary directory
        temp_dir = tempfile.mkdtemp()
        print("Temporary directory created:", temp_dir)
    
        # Copy the selected video to the temporary directory
        new_video_path = os.path.join(temp_dir, os.path.basename(selected_video))
        shutil.copy(selected_video, new_video_path)
        print(f"Copied {selected_video} to {new_video_path}")
    
        # Delete the workdir folder
        shutil.rmtree(workdir)
        print(f"Deleted workdir: {workdir}")
    
        # Return the new path of the copied video
        return new_video_path
   
    except subprocess.CalledProcessError as e:
        raise gr.Error(f"Error during inference: {str(e)}")

with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# L4GM: Large 4D Gaussian Reconstruction Model")
        gr.HTML("""
            <div style="display:flex;column-gap:4px;">
                <a href="https://github.com/nv-tlabs/L4GM-official/tree/main">
                    <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
                </a> 
                <a href="https://research.nvidia.com/labs/toronto-ai/l4gm/">
                    <img src='https://img.shields.io/badge/Project-Page-green'>
                </a>
    			<a href="https://arxiv.org/abs/2406.10324">
                    <img src='https://img.shields.io/badge/ArXiv-Paper-red'>
                </a>
                <a href="https://huggingface.co/spaces/fffiloni/L4GM-demo?duplicate=true">
    				<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
    			</a>
    			<a href="https://huggingface.co/fffiloni">
    				<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
    			</a>
            </div>
         """)
        with gr.Row():
            with gr.Column():
                input_video = gr.Video(label="Input Video", interactive=False)
                submit_btn = gr.Button("Submit")
            with gr.Column():
    
                output_result_4 = gr.Video(label="Result")

        gr.Examples(
            examples = video_examples,
            inputs = [input_video],
            examples_per_page = 3
        )

    submit_btn.click(
        fn = generate,
        inputs = [input_video],
        outputs = [
            output_result_4
        ]
    )

demo.queue().launch(show_api=False, show_error=True)