File size: 2,111 Bytes
d2e8c3f
 
 
b04e321
d2e8c3f
 
bc16e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf30bfe
 
 
 
bc16e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch

print(torch.__version__)
print(torch.version.cuda)
print(torch.cuda.is_available())

import os, subprocess
import uuid, tempfile
import gradio as gr
from huggingface_hub import snapshot_download

os.makedirs("pretrained", exist_ok=True)
snapshot_download(
    repo_id = "jiawei011/L4GM",
    local_dir = "./pretrained"
)

# Folder containing example images
examples_folder = "data_test"

# Retrieve all file paths in the folder
video_examples = [
    os.path.join(examples_folder, file)
    for file in os.listdir(examples_folder)
    if os.path.isfile(os.path.join(examples_folder, file))
]


def generate(input_video):

    #--test_path data_test/otter-on-surfboard_fg.mp4
    workdir = "results"
    pretrained_model = "pretrained/recon.safetensors"
    num_frames = 1
    test_path = input_video
    
    try:
        # Run the inference command
        subprocess.run(
            [
                "python", "infer_3d.py", "big",
                "--workspace", f"{workdir}",
                "--resume", f"{pretrained_model}",
                "--num_frames", f"{num_frames}",
                "--test_path", f"{test_path}",
            ],
            check=True
        )

        
        # Retrieve the file name without the extension
        #removed_bg_file_name = os.path.splitext(os.path.basename(removed_bg_path))[0]
        output_videos = glob(os.path.join(f"{workdir}", "*.mp4"))
        return output_videos
    except subprocess.CalledProcessError as e:
        return f"Error during inference: {str(e)}"

with gr.Blocks() as demo:
    with gr.Column():
        with gr.Row():
            with gr.Column():
                input_video = gr.Video(label="Input Video")
                submit_btn = gr.Button("Submit")
            with gr.Column():
                output_result = gr.Video(label="Result")

        gr.Examples(
            examples = video_examples,
            inputs = [input_video]
        )

    submit_btn.click(
        fn = generate,
        inputs = [input_video],
        outputs = [output_result]
    )

demo.queue().launch(show_api=False, show_error=True)