File size: 12,587 Bytes
2cdb96e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tyro
import time
import random

import torch
from core.options import AllConfigs
from core.models import LGM

from accelerate import Accelerator, DistributedDataParallelKwargs
from safetensors.torch import load_file

import kiui
from PIL import Image

import json
import os
import numpy as np
import imageio

def main():    
    opt = tyro.cli(AllConfigs)

    accelerator = Accelerator(
        mixed_precision=opt.mixed_precision,
        gradient_accumulation_steps=opt.gradient_accumulation_steps,
        # kwargs_handlers=[ddp_kwargs],
    )
    if accelerator.is_main_process:
        print(opt)

    # model
    model = LGM(opt)

    epoch_start = 0
    if os.path.exists(f'{opt.workspace}/model.safetensors') and os.path.exists(f'{opt.workspace}/metadata.json'):
        opt.resume = f'{opt.workspace}/model.safetensors'
        with open(f'{opt.workspace}/metadata.json', 'r') as f:
            dc = json.load(f)
            epoch_start = dc['epoch'] + 1


    # resume
    if opt.resume is not None and opt.resume != 'None':
        if opt.resume.endswith('safetensors'):
            ckpt = load_file(opt.resume, device='cpu')
        else:
            ckpt = torch.load(opt.resume, map_location='cpu')
        
        # tolerant load (only load matching shapes)
        # model.load_state_dict(ckpt, strict=False)
        state_dict = model.state_dict()
        for k, v in ckpt.items():
            if k in state_dict: 
                if state_dict[k].shape == v.shape:
                    state_dict[k].copy_(v)
                else:
                    accelerator.print(f'[WARN] mismatching shape for param {k}: ckpt {v.shape} != model {state_dict[k].shape}, ignored.')
            else:
                accelerator.print(f'[WARN] unexpected param {k}: {v.shape}')
    
    # data
    if opt.data_mode == '4d':
        from core.provider_objaverse_4d import ObjaverseDataset as Dataset
    elif opt.data_mode == '4d_interp':
        from core.provider_objaverse_4d_interp import ObjaverseDataset as Dataset
    else:
        raise NotImplementedError

    train_dataset = Dataset(opt, training=True)
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=opt.batch_size,
        shuffle=True,
        num_workers=opt.num_workers,
        pin_memory=True,
        drop_last=True,
    )

    test_dataset = Dataset(opt, training=False)
    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
        batch_size=opt.batch_size,
        shuffle=False,
        num_workers=0,
        pin_memory=True,
        drop_last=False,
    )

    # optimizer
    optimizer = torch.optim.AdamW(model.parameters(), lr=opt.lr, weight_decay=0.05, betas=(0.9, 0.95))

    # scheduler (per-iteration)
    total_steps = opt.num_epochs * len(train_dataloader)
    pct_start = 3000 / total_steps
    scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=opt.lr, total_steps=total_steps, pct_start=pct_start)

    if epoch_start > 0:
        optimizer.load_state_dict(torch.load(os.path.join(opt.workspace, 'optimizer.pth'), map_location='cpu'))
        scheduler.load_state_dict(torch.load(os.path.join(opt.workspace, 'scheduler.pth')))

    # accelerate
    model, optimizer, train_dataloader, test_dataloader, scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, test_dataloader, scheduler
    )



    # loop
    os.makedirs(opt.workspace, exist_ok=True)
    end_time = time.time()
    for epoch in range(epoch_start, opt.num_epochs):
        # train
        model.train()
        total_loss = 0
        total_psnr = 0
        for i, data in enumerate(train_dataloader):
            with accelerator.accumulate(model):

                optimizer.zero_grad()

                step_ratio = (epoch + i / len(train_dataloader)) / opt.num_epochs

                out = model(data, step_ratio)
                loss = out['loss']
                psnr = out['psnr']
                accelerator.backward(loss)

                # gradient clipping
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), opt.gradient_clip)

                optimizer.step()
                scheduler.step()

                total_loss += loss.detach()
                total_psnr += psnr.detach()

            if accelerator.is_main_process:
                # logging
                if i % 10 == 0:
                    mem_free, mem_total = torch.cuda.mem_get_info()    
                    print(f"[INFO] {i}/{len(train_dataloader)} mem: {(mem_total-mem_free)/1024**3:.2f}/{mem_total/1024**3:.2f}G lr: {scheduler.get_last_lr()[0]:.7f} step_ratio: {step_ratio:.4f} loss: {loss.item():.6f} time: {time.time() - end_time:.6f}")
                    end_time = time.time()
                
                # save log images
                if i % 500 == 0:
                    if '4d' in opt.data_mode:
                        B, T, V = opt.batch_size, opt.num_frames, opt.num_views

                        gt_images = data['images_output'].reshape(B, T, V, *data['images_output'].shape[2:]).detach() # [B, V, 3, output_size, output_size]
                        pred_images = out['images_pred'].reshape(B, T, V, *out['images_pred'].shape[2:]).detach() # [B, V, 3, output_size, output_size]

                        train_gt_images = []
                        train_pred_images = []
                        for t in range(T):
                            train_gt_images_V = []
                            train_pred_images_V = []
                            for v in range(V):
                                train_gt_images_V.append((gt_images[:, t, v].permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
                                train_pred_images_V.append((pred_images[:, t, v].permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
                            train_gt_images.append(np.concatenate(train_gt_images_V, axis=2))
                            train_pred_images.append(np.concatenate(train_pred_images_V, axis=2))
                        train_gt_images = np.concatenate(train_gt_images, axis=0)
                        train_pred_images = np.concatenate(train_pred_images, axis=0)
                        imageio.mimwrite(f'{opt.workspace}/train_gt_images_{epoch}_{i}.mp4', train_gt_images, fps=8)
                        imageio.mimwrite(f'{opt.workspace}/train_pred_images_{epoch}_{i}.mp4', train_pred_images, fps=8)
                        

                    elif '3d' in opt.data_mode:
                        gt_images = data['images_output'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
                        gt_images = gt_images.transpose(0, 3, 1, 4, 2).reshape(-1, gt_images.shape[1] * gt_images.shape[3], 3) # [B*output_size, V*output_size, 3]
                        kiui.write_image(f'{opt.workspace}/train_gt_images_{epoch}_{i}.jpg', gt_images)

                        pred_images = out['images_pred'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
                        pred_images = pred_images.transpose(0, 3, 1, 4, 2).reshape(-1, pred_images.shape[1] * pred_images.shape[3], 3)
                        kiui.write_image(f'{opt.workspace}/train_pred_images_{epoch}_{i}.jpg', pred_images)
                    else:
                        raise NotImplementedError
                    

        total_loss = accelerator.gather_for_metrics(total_loss).mean()
        total_psnr = accelerator.gather_for_metrics(total_psnr).mean()
        if accelerator.is_main_process:
            total_loss /= len(train_dataloader)
            total_psnr /= len(train_dataloader)
            accelerator.print(f"[train] epoch: {epoch} loss: {total_loss.item():.6f} psnr: {total_psnr.item():.4f}")
        
        # checkpoint
        accelerator.wait_for_everyone()
        accelerator.save_model(model, opt.workspace)
        accelerator.save_model(model, os.path.join(opt.workspace, 'backup'))
        if accelerator.is_main_process:
            torch.save(optimizer.state_dict(), os.path.join(opt.workspace, 'optimizer.pth'))
            torch.save(scheduler.state_dict(), os.path.join(opt.workspace, 'scheduler.pth'))
            with open(f'{opt.workspace}/metadata.json', 'w') as f:
                json.dump({'epoch': epoch}, f)

            torch.save(optimizer.state_dict(), os.path.join(opt.workspace, 'backup', 'optimizer.pth'))
            torch.save(scheduler.state_dict(), os.path.join(opt.workspace, 'backup', 'scheduler.pth'))
            with open(f'{opt.workspace}/backup/metadata.json', 'w') as f:
                json.dump({'epoch': epoch}, f)


        # eval
        with torch.no_grad():
            model.eval()
            total_psnr = 0
            for i, data in enumerate(test_dataloader):

                out = model(data)
    
                psnr = out['psnr']
                total_psnr += psnr.detach()
                
                # save some images
                if accelerator.is_main_process:
                    if '4d' in opt.data_mode:
                        B, T, V = opt.batch_size, opt.num_frames, opt.num_views

                        gt_images = data['images_output'].reshape(-1, T, V, *data['images_output'].shape[2:]).detach() # [B, V, 3, output_size, output_size]
                        pred_images = out['images_pred'].reshape(-1, T, V, *out['images_pred'].shape[2:]).detach() # [B, V, 3, output_size, output_size]

                        eval_gt_images = []
                        eval_pred_images = []
                        for t in range(T):
                            eval_gt_images_V = []
                            eval_pred_images_V = []
                            for v in range(V):
                                eval_gt_images_V.append((gt_images[:, t, v].permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
                                eval_pred_images_V.append((pred_images[:, t, v].permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
                            eval_gt_images.append(np.concatenate(eval_gt_images_V, axis=2))
                            eval_pred_images.append(np.concatenate(eval_pred_images_V, axis=2))
                        eval_gt_images = np.concatenate(eval_gt_images, axis=0)
                        eval_pred_images = np.concatenate(eval_pred_images, axis=0)
                        imageio.mimwrite(f'{opt.workspace}/eval_gt_images_{epoch}_{i}.mp4', eval_gt_images, fps=8)
                        imageio.mimwrite(f'{opt.workspace}/eval_pred_images_{epoch}_{i}.mp4', eval_pred_images, fps=8)
                        
                    elif '3d' in opt.data_mode:
                        gt_images = data['images_output'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
                        gt_images = gt_images.transpose(0, 3, 1, 4, 2).reshape(-1, gt_images.shape[1] * gt_images.shape[3], 3) # [B*output_size, V*output_size, 3]
                        kiui.write_image(f'{opt.workspace}/eval_gt_images_{epoch}_{i}.jpg', gt_images)

                        pred_images = out['images_pred'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
                        pred_images = pred_images.transpose(0, 3, 1, 4, 2).reshape(-1, pred_images.shape[1] * pred_images.shape[3], 3)
                        kiui.write_image(f'{opt.workspace}/eval_pred_images_{epoch}_{i}.jpg', pred_images)
                    else:
                        raise NotImplementedError

            torch.cuda.empty_cache()

            total_psnr = accelerator.gather_for_metrics(total_psnr).mean()
            if accelerator.is_main_process:
                total_psnr /= len(test_dataloader)
                accelerator.print(f"[eval] epoch: {epoch} psnr: {psnr:.4f}")



if __name__ == "__main__":
    main()