File size: 10,790 Bytes
2cdb96e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import random
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset

import kiui
from core.options import Options
from core.utils import get_rays, grid_distortion, orbit_camera_jitter

from kiui.cam import orbit_camera

import tarfile
from io import BytesIO

IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)


def load_np_array_from_tar(tar, path):
    array_file = BytesIO()
    array_file.write(tar.extractfile(path).read())
    array_file.seek(0)
    return np.load(array_file)


class ObjaverseDataset(Dataset):

    def _warn(self):
        raise NotImplementedError('this dataset is just an example and cannot be used directly, you should modify it to your own setting! (search keyword TODO)')

    def __init__(self, opt: Options, training=True, evaluating=False):
        
        self.opt = opt
        self.training = training
        self.evaluating = evaluating

        self.items = []
        with open(self.opt.datalist, 'r') as f:
            for line in f.readlines():
                self.items.append(line.strip())
        

        anim_map = {}
        for x in self.items:
            k = x.split('-')[1]
            if k in anim_map:
                anim_map[k] += '|'+x
            else:
                anim_map[k] = x
        self.items = list(anim_map.values())


        # naive split
        if self.training:
            self.items = self.items[:-self.opt.batch_size]
        elif self.evaluating:
            self.items = self.items[::1000]
        else:
            self.items = self.items[-self.opt.batch_size:]


        # default camera intrinsics
        self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy))
        self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
        self.proj_matrix[0, 0] = 1 / self.tan_half_fov
        self.proj_matrix[1, 1] = 1 / self.tan_half_fov
        self.proj_matrix[2, 2] = (self.opt.zfar + self.opt.znear) / (self.opt.zfar - self.opt.znear)
        self.proj_matrix[3, 2] = - (self.opt.zfar * self.opt.znear) / (self.opt.zfar - self.opt.znear)
        self.proj_matrix[2, 3] = 1

    def __len__(self):
        return len(self.items)

    def _get_batch(self, idx):
        if self.training:
            uid = random.choice(self.items[idx].split('|'))
        else:
            uid = self.items[idx].split('|')[0]

        results = {}

        # load num_views images
        images = []
        masks = []
        cam_poses = []
        
        if self.training and self.opt.shuffle_input:
            vids = np.random.permutation(np.arange(32, 48))[:self.opt.num_input_views].tolist() + np.random.permutation(32).tolist()
        else:
            vids = np.arange(32, 48, 4).tolist() + np.arange(32).tolist()


        random_tar_name = 'random_clip/' + uid
        fixed_16_tar_name = 'fixed_16_clip/' + uid

        local_random_tar_name = os.environ["DATA_HOME"] + random_tar_name.replace('/', '-')
        local_fixed_16_tar_name = os.environ["DATA_HOME"] + fixed_16_tar_name.replace('/', '-')

        tar_random = tarfile.open(local_random_tar_name)
        tar_fixed = tarfile.open(local_fixed_16_tar_name)
        

        T = self.opt.num_frames
        for t_idx in range(T):
            t = t_idx
            vid_cnt = 0
            for vid in vids:
                if vid >= 32:
                    vid = vid % 32
                    tar = tar_fixed
                else:
                    tar = tar_random

                image_path = os.path.join('.', f'{vid:03d}/img', f'{t:03d}.jpg')
                mask_path = os.path.join('.', f'{vid:03d}/mask', f'{t:03d}.png')

                elevation_path = os.path.join('.', f'{vid:03d}/camera', f'elevation.npy')
                rotation_path = os.path.join('.', f'{vid:03d}/camera', f'rotation.npy')

                image = np.frombuffer(tar.extractfile(image_path).read(), np.uint8)
                image = torch.from_numpy(cv2.imdecode(image, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1]

                azi = load_np_array_from_tar(tar, rotation_path)[t, None]
                elevation = load_np_array_from_tar(tar, elevation_path)[t, None] * -1       # to align with pretrained LGM
                azi = float(azi)
                elevation = float(elevation)
                c2w = torch.from_numpy(orbit_camera(elevation, azi, radius=1.5, opengl=True))
                
                image = image.permute(2, 0, 1) # [4, 512, 512]

                mask = np.frombuffer(tar.extractfile(mask_path).read(), np.uint8)
                mask = torch.from_numpy(cv2.imdecode(mask, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255).unsqueeze(0)  # [512, 512, 4] in [0, 1]

                image = F.interpolate(image.unsqueeze(0), size=(512, 512), mode='nearest').squeeze(0)
                mask = F.interpolate(mask.unsqueeze(0), size=(512, 512), mode='nearest').squeeze(0)

                image = image[:3] * mask + (1 - mask) # [3, 512, 512], to white bg
                image = image[[2,1,0]].contiguous() # bgr to rgb

                images.append(image)
                masks.append(mask.squeeze(0))
                cam_poses.append(c2w)

                vid_cnt += 1
                if vid_cnt == self.opt.num_views:
                    break

            if vid_cnt < self.opt.num_views:
                print(f'[WARN] dataset {uid}: not enough valid views, only {vid_cnt} views found!')
                n = self.opt.num_views - vid_cnt
                images = images + [images[-1]] * n
                masks = masks + [masks[-1]] * n
                cam_poses = cam_poses + [cam_poses[-1]] * n
          
        images = torch.stack(images, dim=0) # [V, C, H, W]
        masks = torch.stack(masks, dim=0) # [V, H, W]
        cam_poses = torch.stack(cam_poses, dim=0) # [V, 4, 4]

        # normalized camera feats as in paper (transform the first pose to a fixed position)
        transform = torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, self.opt.cam_radius], [0, 0, 0, 1]], dtype=torch.float32) @ torch.inverse(cam_poses[0])
        cam_poses = transform.unsqueeze(0) @ cam_poses  # [V, 4, 4]
        
        images_input = F.interpolate(images.reshape(T, self.opt.num_views, *images.shape[1:])[:, :self.opt.num_input_views].reshape(-1, *images.shape[1:]).clone(), size=(self.opt.input_size, self.opt.input_size), mode='bilinear', align_corners=False) # [V, C, H, W]
        cam_poses_input = cam_poses.reshape(T, self.opt.num_views, *cam_poses.shape[1:])[:, :self.opt.num_input_views].reshape(-1, *cam_poses.shape[1:]).clone()

        # data augmentation
        if self.training:
            images_input = images_input.reshape(T, self.opt.num_input_views, *images_input.shape[1:])
            cam_poses_input = cam_poses_input.reshape(T, self.opt.num_input_views, *cam_poses.shape[1:])

            # apply random grid distortion to simulate 3D inconsistency
            if random.random() < self.opt.prob_grid_distortion:
                for t in range(T):
                    images_input[t, 1:] = grid_distortion(images_input[t, 1:])
            # apply camera jittering (only to input!)
            if random.random() < self.opt.prob_cam_jitter:
                for t in range(T):
                    cam_poses_input[t, 1:] = orbit_camera_jitter(cam_poses_input[t, 1:])

            images_input = images_input.reshape(-1, *images_input.shape[2:])
            cam_poses_input = cam_poses_input.reshape(-1, *cam_poses.shape[1:])

        # masking other views
        images_input = images_input.reshape(T, self.opt.num_input_views, *images_input.shape[1:])
        images_input[1:, 1:] = images_input[0:1, 1:]
        images_input = images_input.reshape(-1, *images_input.shape[2:])

        cam_poses_input = cam_poses_input.reshape(T, self.opt.num_input_views, *cam_poses.shape[1:])
        cam_poses_input[1:, 1:] = cam_poses_input[0:1, 1:]
        cam_poses_input = cam_poses_input.reshape(-1, *cam_poses.shape[1:])

        images_input = TF.normalize(images_input, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)

        # resize render ground-truth images, range still in [0, 1]
        results['images_output'] = F.interpolate(images, size=(self.opt.output_size, self.opt.output_size), mode='bilinear', align_corners=False) # [V, C, output_size, output_size]
        results['masks_output'] = F.interpolate(masks.unsqueeze(1), size=(self.opt.output_size, self.opt.output_size), mode='bilinear', align_corners=False) # [V, 1, output_size, output_size]

        # build rays for input views
        rays_embeddings = []
        for i in range(self.opt.num_input_views * T):
            rays_o, rays_d = get_rays(cam_poses_input[i], self.opt.input_size, self.opt.input_size, self.opt.fovy) # [h, w, 3]
            rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1) # [h, w, 6]
            rays_embeddings.append(rays_plucker)

     
        rays_embeddings = torch.stack(rays_embeddings, dim=0).permute(0, 3, 1, 2).contiguous() # [V, 6, h, w]

        final_input = torch.cat([images_input, rays_embeddings], dim=1) # [V=4, 9, H, W]
        results['input'] = final_input

        # opengl to colmap camera for gaussian renderer
        cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
        
        # cameras needed by gaussian rasterizer
        cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
        cam_view_proj = cam_view @ self.proj_matrix # [V, 4, 4]
        cam_pos = - cam_poses[:, :3, 3] # [V, 3]
        
        results['cam_view'] = cam_view
        results['cam_view_proj'] = cam_view_proj
        results['cam_pos'] = cam_pos

        return results

    def __getitem__(self, idx):
        while True:
            try:
                results = self._get_batch(idx)
                break
            except Exception as e:
                print(f"{e}")
                idx = random.randint(0, len(self.items) - 1)
        return results