Spaces:
Running
on
T4
Running
on
T4
File size: 4,152 Bytes
4045a73 865ddb0 8eb20e0 1cc5e4c 8eb20e0 1cc5e4c 8eb20e0 1cc5e4c 8eb20e0 7e5988c 8eb20e0 4045a73 d707478 8eb20e0 22e427c 8eb20e0 4045a73 1688517 4045a73 aad4b49 ef9c3f5 5a5aa5d ef9c3f5 8cbbe53 4045a73 8eb20e0 5355776 8eb20e0 46ec255 8eb20e0 b198dd8 8eb20e0 46ec255 8eb20e0 46ec255 ebac8ff 1cc5e4c 46ec255 ebac8ff 46ec255 8eb20e0 b198dd8 8eb20e0 b198dd8 5355776 ab68a5c 5355776 31fd0a0 35a3bd1 5355776 8eb20e0 35a3bd1 4045a73 cfecf1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import gradio as gr
import subprocess
import os
from PIL import Image
def resize_image(image_path, target_height, output_path):
# Open the image file
with Image.open(image_path) as img:
# Calculate the ratio to resize the image to the target height
#ratio = target_height / float(img.size[1])
# Calculate the new width based on the aspect ratio
#new_width = int(float(img.size[0]) * ratio)
# Resize the image
resized_img = img.resize((512, target_height), Image.LANCZOS)
# Save the resized image
resized_img.save(output_path)
return output_path
def generate(image, prompt, seed):
print(image, prompt, seed)
image_path = os.path.splitext(image)[0]
image_name = os.path.basename(image_path)
resized=resize_image(image, 512, f"output/{image_name}.jpg")
print(f"IMAGE NAME: {image_name}")
command = f"python handrefiner.py --input_img {resized} --out_dir output --strength 0.55 --weights models/inpaint_depth_control.ckpt --prompt '{prompt}' --seed {seed}"
try:
result = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
output_path = 'output'
print("Output:", result.stdout)
print(output_path)
# List all files and directories in the given directory
contents = os.listdir("output")
# Print the contents
for item in contents:
print(item)
return f"output/{image_name}_0.jpg"
except subprocess.CalledProcessError as e:
print("Error:", e.stderr)
return None
css="""
#col-container{
max-width: 860px;
margin: 0 auto;
}
#project-links{
margin: 0 0 12px !important;
column-gap: 8px;
display: flex;
justify-content: center;
flex-wrap: nowrap;
flex-direction: row;
align-items: center;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<h2 style="text-align: center;">
HandRefiner
</h2>
<p style="text-align: center;">
Refining Malformed Hands in Generated Images by Diffusion-based Conditional Inpainting <br />
For demo purpose, every input images are resized to 512 1:1 aspect ratio
</p>
<p style="margin:12px auto;display: flex;justify-content: center;">
<a href="https://huggingface.co/spaces/fffiloni/HandRefiner?duplicate=true"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" alt="Duplicate this Space"></a>
</p>
""")
with gr.Row():
with gr.Column():
image = gr.Image(type='filepath', sources=["upload"])
textbox = gr.Textbox(show_label=False, value="a person facing the camera, making a hand gesture, indoor")
seed = gr.Slider(label="Seed", minimum=0, maximum=1000000, value=42, step=1)
submit_btn = gr.Button("Submit")
gr.Examples(
examples = [
"examples/IMG_1050.jpeg",
"examples/IMG_1051.jpeg",
"examples/IMG_1052.jpeg",
"examples/IMG_1053.jpeg"
],
inputs = [image]
)
with gr.Column():
output_image = gr.Image(label="Fixed hands result")
gr.HTML("""
<p id="project-links" align="center">
<a href='https://github.com/wenquanlu/HandRefiner'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://arxiv.org/abs/2311.17957'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
</p>
<img src="https://github.com/wenquanlu/HandRefiner/raw/main/Figs/banner.png" style="margin: 0 auto;border-radius: 10px;" />
""")
submit_btn.click(fn=generate, inputs=[image, textbox, seed], outputs=[output_image])
demo.queue(max_size=10).launch(debug=True, show_api=False) |