File size: 3,390 Bytes
4045a73
 
865ddb0
8eb20e0
 
 
 
 
 
 
 
 
 
 
 
 
7e5988c
8eb20e0
4045a73
 
 
d707478
 
8eb20e0
 
22e427c
8eb20e0
4045a73
 
1688517
4045a73
aad4b49
ef9c3f5
5a5aa5d
ef9c3f5
 
 
 
 
8cbbe53
4045a73
 
 
 
8eb20e0
 
 
 
 
 
46ec255
8eb20e0
 
46ec255
8eb20e0
 
46ec255
ebac8ff
 
46ec255
ebac8ff
46ec255
 
8eb20e0
 
 
 
31fd0a0
 
 
 
 
 
 
 
 
8eb20e0
 
 
12f50e0
8eb20e0
4045a73
 
46ec255
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import gradio as gr
import subprocess
import os
from PIL import Image

def resize_image(image_path, target_height, output_path):
    # Open the image file
    with Image.open(image_path) as img:
        # Calculate the ratio to resize the image to the target height
        ratio = target_height / float(img.size[1])
        # Calculate the new width based on the aspect ratio
        new_width = int(float(img.size[0]) * ratio)
        # Resize the image
        resized_img = img.resize((new_width, target_height), Image.LANCZOS)
        # Save the resized image
        resized_img.save(output_path)
        return output_path


def generate(image, prompt, seed):
    print(image, prompt, seed)
    image_path = os.path.splitext(image)[0]
    image_name = os.path.basename(image_path)

    resized=resize_image(image, 512, f"output/{image_name}.jpg")
    print(f"IMAGE NAME: {image_name}")
    command = f"python handrefiner.py --input_img {resized} --out_dir output --strength 0.55 --weights models/inpaint_depth_control.ckpt --prompt '{prompt}' --seed {seed}"
    try:
        result = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
        output_path = 'output'
        print("Output:", result.stdout)
        print(output_path)
        # List all files and directories in the given directory
        contents = os.listdir("output")
        
        # Print the contents
        for item in contents:
            print(item)
        
        return f"output/{image_name}_0.jpg"
    except subprocess.CalledProcessError as e:
        print("Error:", e.stderr)
        return None

css="""
#col-container{
    max-width: 860px;
    margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML("""
        <h2 style="text-align: center;">
            HandRefiner
        </h2>
        <p style="text-align: center;">
            Refining Malformed Hands in Generated Images by Diffusion-based Conditional Inpainting <br />
            For demo purpose, every input images are resized to 512 height ratio
        </p>
        <p style="margin:12px auto;display: flex;justify-content: center;">
            <a href="https://huggingface.co/spaces/fffiloni/HandRefiner?duplicate=true"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" alt="Duplicate this Space"></a>
        </p>
        """)
        with gr.Row():
            with gr.Column():
                image = gr.Image(type='filepath')
                gr.Examples(
                    examples = [
                        "examples/IMG_1050.jpeg",
                        "examples/IMG_1051.jpeg",
                        "examples/IMG_1052.jpeg",
                        "examples/IMG_1053.jpeg"
                    ],
                    inputs = [image]
                )
                textbox = gr.Textbox(show_label=False, value="a person facing the camera, making a hand gesture, indoor")
                seed = gr.Slider(label="Seed", minimum=0, maximum=1000000, value=643534)
                button = gr.Button()
            output_image = gr.Image(show_label=False, type="filepath", interactive=False)
      
    button.click(fn=generate, inputs=[image, textbox, seed], outputs=[output_image])

demo.queue(max_size=10).launch(inline=False, debug=True)