Spaces:
Running
on
L40S
Running
on
L40S
File size: 14,360 Bytes
03a856a 6b6d391 0616d16 529fb74 03a856a dbd7242 6426e9a 03a856a 529fb74 dbd7242 529fb74 dbd7242 529fb74 dbd7242 529fb74 dbd7242 529fb74 dbd7242 529fb74 dbd7242 529fb74 dbd7242 03a856a dbd7242 529fb74 dbd7242 03a856a dbd7242 03a856a dbd7242 0616d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
webui
'''
import os
import random
from datetime import datetime
from pathlib import Path
import cv2
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Image
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_echo import EchoUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echo_mimic import Audio2VideoPipeline
from src.utils.util import save_videos_grid, crop_and_pad
from src.models.face_locator import FaceLocator
from moviepy.editor import VideoFileClip, AudioFileClip
from facenet_pytorch import MTCNN
import argparse
import gradio as gr
from huggingface_hub import snapshot_download
huggingface_hub.snapshot_download(
repo_id='BadToBest/EchoMimic',
local_dir='./pretrained_weights',
local_dir_use_symlinks=False,
)
is_shared_ui = True if "fffiloni/EchoMimic" in os.environ['SPACE_ID'] else False
available_property = False if is_shared_ui else True
advanced_settings_label = "Advanced Configuration (only for duplicated spaces)" if is_shared_ui else "Advanced Configuration"
default_values = {
"width": 512,
"height": 512,
"length": 1200,
"seed": 420,
"facemask_dilation_ratio": 0.1,
"facecrop_dilation_ratio": 0.5,
"context_frames": 12,
"context_overlap": 3,
"cfg": 2.5,
"steps": 30,
"sample_rate": 16000,
"fps": 24,
"device": "cuda"
}
ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=/musetalk/ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
print("add ffmpeg to path")
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
config_path = "./configs/prompts/animation.yaml"
config = OmegaConf.load(config_path)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
device = "cuda"
if not torch.cuda.is_available():
device = "cpu"
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path).to("cuda", dtype=weight_dtype)
## reference net init
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device=device)
reference_unet.load_state_dict(torch.load(config.reference_unet_path, map_location="cpu"))
## denoising net init
if os.path.exists(config.motion_module_path):
### stage1 + stage2
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device=device)
else:
### only stage1
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
"",
subfolder="unet",
unet_additional_kwargs={
"use_motion_module": False,
"unet_use_temporal_attention": False,
"cross_attention_dim": infer_config.unet_additional_kwargs.cross_attention_dim
}
).to(dtype=weight_dtype, device=device)
denoising_unet.load_state_dict(torch.load(config.denoising_unet_path, map_location="cpu"), strict=False)
## face locator init
face_locator = FaceLocator(320, conditioning_channels=1, block_out_channels=(16, 32, 96, 256)).to(dtype=weight_dtype, device="cuda")
face_locator.load_state_dict(torch.load(config.face_locator_path))
## load audio processor params
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device)
## load face detector params
face_detector = MTCNN(image_size=320, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device=device)
############# model_init finished #############
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
pipe = Audio2VideoPipeline(
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
audio_guider=audio_processor,
face_locator=face_locator,
scheduler=scheduler,
).to("cuda", dtype=weight_dtype)
def select_face(det_bboxes, probs):
## max face from faces that the prob is above 0.8
## box: xyxy
if det_bboxes is None or probs is None:
return None
filtered_bboxes = []
for bbox_i in range(len(det_bboxes)):
if probs[bbox_i] > 0.8:
filtered_bboxes.append(det_bboxes[bbox_i])
if len(filtered_bboxes) == 0:
return None
sorted_bboxes = sorted(filtered_bboxes, key=lambda x:(x[3]-x[1]) * (x[2] - x[0]), reverse=True)
return sorted_bboxes[0]
def process_video(uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
if seed is not None and seed > -1:
generator = torch.manual_seed(seed)
else:
generator = torch.manual_seed(random.randint(100, 1000000))
#### face musk prepare
face_img = cv2.imread(uploaded_img)
face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
det_bboxes, probs = face_detector.detect(face_img)
select_bbox = select_face(det_bboxes, probs)
if select_bbox is None:
face_mask[:, :] = 255
else:
xyxy = select_bbox[:4]
xyxy = np.round(xyxy).astype('int')
rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2]
r_pad = int((re - rb) * facemask_dilation_ratio)
c_pad = int((ce - cb) * facemask_dilation_ratio)
face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255
#### face crop
r_pad_crop = int((re - rb) * facecrop_dilation_ratio)
c_pad_crop = int((ce - cb) * facecrop_dilation_ratio)
crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])]
face_img = crop_and_pad(face_img, crop_rect)
face_mask = crop_and_pad(face_mask, crop_rect)
face_img = cv2.resize(face_img, (width, height))
face_mask = cv2.resize(face_mask, (width, height))
ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
video = pipe(
ref_image_pil,
uploaded_audio,
face_mask_tensor,
width,
height,
length,
steps,
cfg,
generator=generator,
audio_sample_rate=sample_rate,
context_frames=context_frames,
fps=fps,
context_overlap=context_overlap
).videos
save_dir = Path("output/tmp")
save_dir.mkdir(exist_ok=True, parents=True)
output_video_path = save_dir / "output_video.mp4"
save_videos_grid(video, str(output_video_path), n_rows=1, fps=fps)
video_clip = VideoFileClip(str(output_video_path))
audio_clip = AudioFileClip(uploaded_audio)
final_output_path = save_dir / "output_video_with_audio.mp4"
video_clip = video_clip.set_audio(audio_clip)
video_clip.write_videofile(str(final_output_path), codec="libx264", audio_codec="aac")
return final_output_path
with gr.Blocks() as demo:
gr.Markdown('# EchoMimic')
gr.Markdown('## Lifelike Audio-Driven Portrait Animations through Editable Landmark Conditioning')
gr.Markdown('Inference time: from ~7mins/240frames to ~50s/240frames on V100 GPU')
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href='https://badtobest.github.io/echomimic.html'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
<a href='https://huggingface.co/BadToBest/EchoMimic'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a>
<a href='https://arxiv.org/abs/2407.08136'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
</div>
""")
with gr.Row():
with gr.Column():
uploaded_img = gr.Image(type="filepath", label="Reference Image")
uploaded_audio = gr.Audio(type="filepath", label="Input Audio")
with gr.Accordion(label=advanced_settings_label, open=False):
with gr.Row():
width = gr.Slider(label="Width", minimum=128, maximum=1024, value=default_values["width"], interactive=available_property)
height = gr.Slider(label="Height", minimum=128, maximum=1024, value=default_values["height"], interactive=available_property)
with gr.Row():
length = gr.Slider(label="Length", minimum=100, maximum=5000, value=default_values["length"], interactive=available_property)
seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=default_values["seed"], interactive=available_property)
with gr.Row():
facemask_dilation_ratio = gr.Slider(label="Facemask Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facemask_dilation_ratio"], interactive=available_property)
facecrop_dilation_ratio = gr.Slider(label="Facecrop Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facecrop_dilation_ratio"], interactive=available_property)
with gr.Row():
context_frames = gr.Slider(label="Context Frames", minimum=0, maximum=50, step=1, value=default_values["context_frames"], interactive=available_property)
context_overlap = gr.Slider(label="Context Overlap", minimum=0, maximum=10, step=1, value=default_values["context_overlap"], interactive=available_property)
with gr.Row():
cfg = gr.Slider(label="CFG", minimum=0.0, maximum=10.0, step=0.1, value=default_values["cfg"], interactive=available_property)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=default_values["steps"], interactive=available_property)
with gr.Row():
sample_rate = gr.Slider(label="Sample Rate", minimum=8000, maximum=48000, step=1000, value=default_values["sample_rate"], interactive=available_property)
fps = gr.Slider(label="FPS", minimum=1, maximum=60, step=1, value=default_values["fps"], interactive=available_property)
device = gr.Radio(label="Device", choices=["cuda", "cpu"], value=default_values["device"], interactive=available_property)
generate_button = gr.Button("Generate Video")
with gr.Column():
output_video = gr.Video()
gr.Examples(
label = "Portrait examples",
examples = [
['assets/test_imgs/a.png'],
['assets/test_imgs/b.png'],
['assets/test_imgs/c.png'],
['assets/test_imgs/d.png'],
['assets/test_imgs/e.png']
],
inputs = [uploaded_img]
)
gr.Examples(
label = "Audio examples",
examples = [
['assets/test_audios/chunnuanhuakai.wav'],
['assets/test_audios/chunwang.wav'],
['assets/test_audios/echomimic_en_girl.wav'],
['assets/test_audios/echomimic_en.wav'],
['assets/test_audios/echomimic_girl.wav'],
['assets/test_audios/echomimic.wav'],
['assets/test_audios/jane.wav'],
['assets/test_audios/mei.wav'],
['assets/test_audios/walden.wav'],
['assets/test_audios/yun.wav'],
],
inputs = [uploaded_audio]
)
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://huggingface.co/spaces/fffiloni/EchoMimic?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-xl.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-xl-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
def generate_video(uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
final_output_path = process_video(
uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device
)
output_video= final_output_path
return final_output_path
generate_button.click(
generate_video,
inputs=[
uploaded_img,
uploaded_audio,
width,
height,
length,
seed,
facemask_dilation_ratio,
facecrop_dilation_ratio,
context_frames,
context_overlap,
cfg,
steps,
sample_rate,
fps,
device
],
outputs=output_video,
show_api=False
)
parser = argparse.ArgumentParser(description='EchoMimic')
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
parser.add_argument('--server_port', type=int, default=7680, help='Server port')
args = parser.parse_args()
# demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)
if __name__ == '__main__':
demo.queue(max_size=3).launch(show_api=False, show_error=True)
#demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)
|