Spaces:
Paused
Paused
File size: 5,005 Bytes
32ad50d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import torch
from torch import optim
from torch.nn import functional as FF
from torchvision import transforms
from PIL import Image
from tqdm import tqdm
import dataclasses
from .lpips import util
def noise_regularize(noises):
loss = 0
for noise in noises:
size = noise.shape[2]
while True:
loss = (
loss
+ (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2)
+ (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2)
)
if size <= 8:
break
noise = noise.reshape([-1, 1, size // 2, 2, size // 2, 2])
noise = noise.mean([3, 5])
size //= 2
return loss
def noise_normalize_(noises):
for noise in noises:
mean = noise.mean()
std = noise.std()
noise.data.add_(-mean).div_(std)
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05):
lr_ramp = min(1, (1 - t) / rampdown)
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
lr_ramp = lr_ramp * min(1, t / rampup)
return initial_lr * lr_ramp
def latent_noise(latent, strength):
noise = torch.randn_like(latent) * strength
return latent + noise
def make_image(tensor):
return (
tensor.detach()
.clamp_(min=-1, max=1)
.add(1)
.div_(2)
.mul(255)
.type(torch.uint8)
.permute(0, 2, 3, 1)
.to("cpu")
.numpy()
)
@dataclasses.dataclass
class InverseConfig:
lr_warmup = 0.05
lr_decay = 0.25
lr = 0.1
noise = 0.05
noise_decay = 0.75
step = 1000
noise_regularize = 1e5
mse = 0
w_plus = False,
def inverse_image(
g_ema,
image,
image_size=256,
config=InverseConfig()
):
device = "cuda"
args = config
n_mean_latent = 10000
resize = min(image_size, 256)
transform = transforms.Compose(
[
transforms.Resize(resize),
transforms.CenterCrop(resize),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
imgs = []
img = transform(image)
imgs.append(img)
imgs = torch.stack(imgs, 0).to(device)
with torch.no_grad():
noise_sample = torch.randn(n_mean_latent, 512, device=device)
latent_out = g_ema.style(noise_sample)
latent_mean = latent_out.mean(0)
latent_std = ((latent_out - latent_mean).pow(2).sum() / n_mean_latent) ** 0.5
percept = util.PerceptualLoss(
model="net-lin", net="vgg", use_gpu=device.startswith("cuda")
)
noises_single = g_ema.make_noise()
noises = []
for noise in noises_single:
noises.append(noise.repeat(imgs.shape[0], 1, 1, 1).normal_())
latent_in = latent_mean.detach().clone().unsqueeze(0).repeat(imgs.shape[0], 1)
if args.w_plus:
latent_in = latent_in.unsqueeze(1).repeat(1, g_ema.n_latent, 1)
latent_in.requires_grad = True
for noise in noises:
noise.requires_grad = True
optimizer = optim.Adam([latent_in] + noises, lr=args.lr)
pbar = tqdm(range(args.step))
latent_path = []
for i in pbar:
t = i / args.step
lr = get_lr(t, args.lr)
optimizer.param_groups[0]["lr"] = lr
noise_strength = latent_std * args.noise * max(0, 1 - t / args.noise_decay) ** 2
latent_n = latent_noise(latent_in, noise_strength.item())
latent, noise = g_ema.prepare([latent_n], input_is_latent=True, noise=noises)
img_gen, F = g_ema.generate(latent, noise)
batch, channel, height, width = img_gen.shape
if height > 256:
factor = height // 256
img_gen = img_gen.reshape(
batch, channel, height // factor, factor, width // factor, factor
)
img_gen = img_gen.mean([3, 5])
p_loss = percept(img_gen, imgs).sum()
n_loss = noise_regularize(noises)
mse_loss = FF.mse_loss(img_gen, imgs)
loss = p_loss + args.noise_regularize * n_loss + args.mse * mse_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
noise_normalize_(noises)
if (i + 1) % 100 == 0:
latent_path.append(latent_in.detach().clone())
pbar.set_description(
(
f"perceptual: {p_loss.item():.4f}; noise regularize: {n_loss.item():.4f};"
f" mse: {mse_loss.item():.4f}; lr: {lr:.4f}"
)
)
latent, noise = g_ema.prepare([latent_path[-1]], input_is_latent=True, noise=noises)
img_gen, F = g_ema.generate(latent, noise)
img_ar = make_image(img_gen)
i = 0
noise_single = []
for noise in noises:
noise_single.append(noise[i: i + 1])
result = {
"latent": latent,
"noise": noise_single,
'F': F,
"sample": img_gen,
}
pil_img = Image.fromarray(img_ar[i])
pil_img.save('project.png')
return result |