File size: 5,005 Bytes
32ad50d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
from torch import optim
from torch.nn import functional as FF
from torchvision import transforms
from PIL import Image
from tqdm import tqdm
import dataclasses

from .lpips import util


def noise_regularize(noises):
    loss = 0

    for noise in noises:
        size = noise.shape[2]

        while True:
            loss = (
                loss
                + (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2)
                + (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2)
            )

            if size <= 8:
                break

            noise = noise.reshape([-1, 1, size // 2, 2, size // 2, 2])
            noise = noise.mean([3, 5])
            size //= 2

    return loss


def noise_normalize_(noises):
    for noise in noises:
        mean = noise.mean()
        std = noise.std()

        noise.data.add_(-mean).div_(std)


def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05):
    lr_ramp = min(1, (1 - t) / rampdown)
    lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
    lr_ramp = lr_ramp * min(1, t / rampup)

    return initial_lr * lr_ramp


def latent_noise(latent, strength):
    noise = torch.randn_like(latent) * strength

    return latent + noise


def make_image(tensor):
    return (
        tensor.detach()
        .clamp_(min=-1, max=1)
        .add(1)
        .div_(2)
        .mul(255)
        .type(torch.uint8)
        .permute(0, 2, 3, 1)
        .to("cpu")
        .numpy()
    )


@dataclasses.dataclass
class InverseConfig:
    lr_warmup = 0.05
    lr_decay = 0.25
    lr = 0.1
    noise = 0.05
    noise_decay = 0.75
    step = 1000
    noise_regularize = 1e5
    mse = 0
    w_plus = False,


def inverse_image(
    g_ema,
    image,
    image_size=256,
    config=InverseConfig()
):
    device = "cuda"
    args = config

    n_mean_latent = 10000

    resize = min(image_size, 256)

    transform = transforms.Compose(
        [
            transforms.Resize(resize),
            transforms.CenterCrop(resize),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
        ]
    )

    imgs = []
    img = transform(image)
    imgs.append(img)

    imgs = torch.stack(imgs, 0).to(device)

    with torch.no_grad():
        noise_sample = torch.randn(n_mean_latent, 512, device=device)
        latent_out = g_ema.style(noise_sample)

        latent_mean = latent_out.mean(0)
        latent_std = ((latent_out - latent_mean).pow(2).sum() / n_mean_latent) ** 0.5

    percept = util.PerceptualLoss(
        model="net-lin", net="vgg", use_gpu=device.startswith("cuda")
    )

    noises_single = g_ema.make_noise()
    noises = []
    for noise in noises_single:
        noises.append(noise.repeat(imgs.shape[0], 1, 1, 1).normal_())

    latent_in = latent_mean.detach().clone().unsqueeze(0).repeat(imgs.shape[0], 1)

    if args.w_plus:
        latent_in = latent_in.unsqueeze(1).repeat(1, g_ema.n_latent, 1)

    latent_in.requires_grad = True

    for noise in noises:
        noise.requires_grad = True

    optimizer = optim.Adam([latent_in] + noises, lr=args.lr)

    pbar = tqdm(range(args.step))
    latent_path = []

    for i in pbar:
        t = i / args.step
        lr = get_lr(t, args.lr)
        optimizer.param_groups[0]["lr"] = lr
        noise_strength = latent_std * args.noise * max(0, 1 - t / args.noise_decay) ** 2
        latent_n = latent_noise(latent_in, noise_strength.item())

        latent, noise = g_ema.prepare([latent_n], input_is_latent=True, noise=noises)
        img_gen, F = g_ema.generate(latent, noise)

        batch, channel, height, width = img_gen.shape

        if height > 256:
            factor = height // 256

            img_gen = img_gen.reshape(
                batch, channel, height // factor, factor, width // factor, factor
            )
            img_gen = img_gen.mean([3, 5])

        p_loss = percept(img_gen, imgs).sum()
        n_loss = noise_regularize(noises)
        mse_loss = FF.mse_loss(img_gen, imgs)

        loss = p_loss + args.noise_regularize * n_loss + args.mse * mse_loss

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        noise_normalize_(noises)

        if (i + 1) % 100 == 0:
            latent_path.append(latent_in.detach().clone())

        pbar.set_description(
            (
                f"perceptual: {p_loss.item():.4f}; noise regularize: {n_loss.item():.4f};"
                f" mse: {mse_loss.item():.4f}; lr: {lr:.4f}"
            )
        )

    latent, noise = g_ema.prepare([latent_path[-1]], input_is_latent=True, noise=noises)
    img_gen, F = g_ema.generate(latent, noise)

    img_ar = make_image(img_gen)

    i = 0

    noise_single = []
    for noise in noises:
        noise_single.append(noise[i: i + 1])

    result = {
        "latent": latent,
        "noise": noise_single,
        'F': F,
        "sample": img_gen,
    }

    pil_img = Image.fromarray(img_ar[i])
    pil_img.save('project.png')

    return result