Spaces:
Paused
Paused
File size: 6,732 Bytes
8502051 ee7f37b 8502051 b0ca684 8502051 f7f5e52 8502051 37d2203 8502051 cb76ea2 8502051 cb76ea2 8502051 cb76ea2 8502051 cad3641 e4d0aa5 8502051 ee7f37b 8502051 ee7f37b 8502051 cb76ea2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import os
import numpy as np
import argparse
import imageio
import torch
from einops import rearrange
from diffusers import DDIMScheduler, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer
# from annotator.canny import CannyDetector
# from annotator.openpose import OpenposeDetector
# from annotator.midas import MidasDetector
# import sys
# sys.path.insert(0, ".")
from huggingface_hub import hf_hub_download
import controlnet_aux
from controlnet_aux import OpenposeDetector, CannyDetector, MidasDetector
from controlnet_aux.open_pose.body import Body
from models.pipeline_controlvideo import ControlVideoPipeline
from models.util import save_videos_grid, read_video, get_annotation
from models.unet import UNet3DConditionModel
from models.controlnet import ControlNetModel3D
from models.RIFE.IFNet_HDv3 import IFNet
device = "cuda"
sd_path = "checkpoints/stable-diffusion-v1-5"
inter_path = "checkpoints/flownet.pkl"
controlnet_dict = {
"pose": "checkpoints/sd-controlnet-openpose",
"depth": "checkpoints/sd-controlnet-depth",
"canny": "checkpoints/sd-controlnet-canny",
}
controlnet_parser_dict = {
"pose": OpenposeDetector,
"depth": MidasDetector,
"canny": CannyDetector,
}
POS_PROMPT = " ,best quality, extremely detailed, HD, ultra-realistic, 8K, HQ, masterpiece, trending on artstation, art, smooth"
NEG_PROMPT = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic"
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, required=True, help="Text description of target video")
parser.add_argument("--video_path", type=str, required=True, help="Path to a source video")
parser.add_argument("--output_path", type=str, default="./outputs", help="Directory of output")
parser.add_argument("--condition", type=str, default="depth", help="Condition of structure sequence")
parser.add_argument("--inference_steps", type=int, default=25, help="Number of inference steps")
parser.add_argument("--video_length", type=int, default=15, help="Length of synthesized video")
parser.add_argument("--height", type=int, default=512, help="Height of synthesized video, and should be a multiple of 32")
parser.add_argument("--width", type=int, default=512, help="Width of synthesized video, and should be a multiple of 32")
parser.add_argument("--fps", type=int, default=8, help="FPS for final output")
parser.add_argument("--smoother_steps", nargs='+', default=[19, 20], type=int, help="Timesteps at which using interleaved-frame smoother")
parser.add_argument("--is_long_video", action='store_true', help="Whether to use hierarchical sampler to produce long video")
parser.add_argument("--seed", type=int, default=42, help="Random seed of generator")
parser.add_argument("--temp_chunk_path", type=str, required=True, help="Path to temporary chunks")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
os.makedirs(args.output_path, exist_ok=True)
# Height and width should be a multiple of 32
args.height = (args.height // 32) * 32
args.width = (args.width // 32) * 32
if args.condition == "pose":
pretrained_model_or_path = "lllyasviel/ControlNet"
body_model_path = hf_hub_download(pretrained_model_or_path, "annotator/ckpts/body_pose_model.pth", cache_dir="checkpoints")
body_estimation = Body(body_model_path)
annotator = controlnet_parser_dict[args.condition](body_estimation)
else:
annotator = controlnet_parser_dict[args.condition]()
tokenizer = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder").to(dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(dtype=torch.float16)
unet = UNet3DConditionModel.from_pretrained_2d(sd_path, subfolder="unet").to(dtype=torch.float16)
controlnet = ControlNetModel3D.from_pretrained_2d(controlnet_dict[args.condition]).to(dtype=torch.float16)
interpolater = IFNet(ckpt_path=inter_path).to(dtype=torch.float16)
scheduler=DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler")
pipe = ControlVideoPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
controlnet=controlnet, interpolater=interpolater, scheduler=scheduler,
)
pipe.enable_vae_slicing()
pipe.enable_xformers_memory_efficient_attention()
pipe.to(device)
generator = torch.Generator(device="cuda")
generator.manual_seed(args.seed)
# Step 1. Read a video
video = read_video(video_path=args.video_path, video_length=args.video_length, width=args.width, height=args.height)
# Save source video
# original_pixels = rearrange(video, "(b f) c h w -> b c f h w", b=1)
# save_videos_grid(original_pixels, os.path.join(args.output_path, "source_video.mp4"), rescale=True)
# Step 2. Parse a video to conditional frames
pil_annotation = get_annotation(video, annotator)
if args.condition == "depth" and controlnet_aux.__version__ == '0.0.1':
pil_annotation = [pil_annot[0] for pil_annot in pil_annotation]
# Save condition video
#video_cond = [np.array(p).astype(np.uint8) for p in pil_annotation]
#imageio.mimsave(os.path.join(args.output_path, f"{args.condition}_condition.mp4"), video_cond, fps=args.fps)
# Reduce memory (optional)
#del annotator; torch.cuda.empty_cache()
# Step 3. inference
if args.is_long_video:
window_size = int(np.sqrt(args.video_length))
if window_size > 4 :
window_size = 4
sample = pipe.generate_long_video(args.prompt + POS_PROMPT, video_length=args.video_length, frames=pil_annotation,
num_inference_steps=args.inference_steps, smooth_steps=args.smoother_steps, window_size=window_size,
generator=generator, guidance_scale=12.5, negative_prompt=NEG_PROMPT,
width=args.width, height=args.height
).videos
else:
sample = pipe(args.prompt + POS_PROMPT, video_length=args.video_length, frames=pil_annotation,
num_inference_steps=args.inference_steps, smooth_steps=args.smoother_steps,
generator=generator, guidance_scale=12.5, negative_prompt=NEG_PROMPT,
width=args.width, height=args.height
).videos
save_videos_grid(sample, f"{args.output_path}/{args.temp_chunk_path}.mp4")
del pipe
torch.cuda.empty_cache() |