File size: 6,478 Bytes
a41d0ed
 
0e633ca
4b2f815
0e633ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b01a9cd
0e633ca
 
 
 
 
 
 
 
 
 
5375f5d
7ff6bed
5375f5d
defc1c6
5375f5d
7ff6bed
5375f5d
0e633ca
5375f5d
7ff6bed
5375f5d
defc1c6
5375f5d
7ff6bed
5375f5d
0e633ca
5375f5d
7ff6bed
5375f5d
defc1c6
5375f5d
7ff6bed
0e633ca
de4a512
a41d0ed
de4a512
 
 
 
 
 
a41d0ed
de4a512
 
df4cffb
de4a512
 
 
0e5d8aa
a41d0ed
 
de4a512
 
 
 
df4cffb
de4a512
a41d0ed
de4a512
 
 
 
 
 
 
 
 
 
 
 
 
df4cffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a41d0ed
df4cffb
a41d0ed
df4cffb
a41d0ed
 
 
 
 
d61a4c0
 
 
 
82b997b
df4cffb
 
a41d0ed
 
 
0e5d8aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from share_btn import community_icon_html, loading_icon_html, share_js

import os, subprocess
import torch

def setup():
    install_cmds = [
        ['pip', 'install', 'ftfy', 'gradio', 'regex', 'tqdm', 'transformers==4.21.2', 'timm', 'fairscale', 'requests'],
        ['pip', 'install', 'open_clip_torch'],
        ['pip', 'install', '-e', 'git+https://github.com/pharmapsychotic/BLIP.git@lib#egg=blip'],
        ['git', 'clone', '-b', 'open-clip', 'https://github.com/pharmapsychotic/clip-interrogator.git']
    ]
    for cmd in install_cmds:
        print(subprocess.run(cmd, stdout=subprocess.PIPE).stdout.decode('utf-8'))

setup()

# download cache files
print("Download preprocessed cache files...")
CACHE_URLS = [
    'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_artists.pkl',
    'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_flavors.pkl',
    'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_mediums.pkl',
    'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_movements.pkl',
    'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_trendings.pkl',
]
os.makedirs('cache', exist_ok=True)
for url in CACHE_URLS:
    print(subprocess.run(['wget', url, '-P', 'cache'], stdout=subprocess.PIPE).stdout.decode('utf-8'))

import sys
sys.path.append('src/blip')
sys.path.append('clip-interrogator')

import gradio as gr
from clip_interrogator import Config, Interrogator

config = Config()
config.device = 'cuda' if torch.cuda.is_available() else 'cpu'
config.blip_offload = True
config.chunk_size = 2048
config.flavor_intermediate_count = 512
config.blip_num_beams = 64

ci = Interrogator(config)

def inference(image, mode, best_max_flavors):
    image = image.convert('RGB')
    if mode == 'best':
        
        prompt_result = ci.interrogate(image, max_flavors=int(best_max_flavors))
        
        print("mode best: " + prompt_result)
        
        return prompt_result, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
    
    elif mode == 'classic':
        
        prompt_result = ci.interrogate_classic(image)
        
        print("mode classic: " + prompt_result)
        
        return prompt_result, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
    
    else:
        
        prompt_result = ci.interrogate_fast(image)
        
        print("mode fast: " + prompt_result)
        
        return prompt_result, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)

title = """
    <div style="text-align: center; max-width: 500px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
            margin-bottom: 10px;
        "
        >
        <h1 style="font-weight: 600; margin-bottom: 7px;">
            CLIP Interrogator 2.1
        </h1>
        </div>
        <p style="margin-bottom: 10px;font-size: 94%;font-weight: 100;line-height: 1.5em;">
        Want to figure out what a good prompt might be to create new images like an existing one? 
        <br />The CLIP Interrogator is here to get you answers!
        <br />This version is specialized for producing nice prompts for use with Stable Diffusion 2.0 using the ViT-H-14 OpenCLIP model!
        </p>
    </div>
"""

article = """
<div style="text-align: center; max-width: 500px; margin: 0 auto;font-size: 94%;">
    
    <p>
    Server busy? You can also run on <a href="https://colab.research.google.com/github/pharmapsychotic/clip-interrogator/blob/open-clip/clip_interrogator.ipynb">Google Colab</a>
    </p>
    <p>
    Has this been helpful to you? Follow Pharma on twitter 
    <a href="https://twitter.com/pharmapsychotic">@pharmapsychotic</a> 
    and check out more tools at his
    <a href="https://pharmapsychotic.com/tools.html">Ai generative art tools list</a>
    </p>
</div>
"""

css = '''
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
    animation: spin 1s linear infinite;
}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {
    display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
    all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
    all: unset;
}
#share-btn-container div:nth-child(-n+2){
    width: auto !important;
    min-height: 0px !important;
}
#share-btn-container .wrap {
    display: none !important;
}
'''

with gr.Blocks(css=css) as block:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)

        input_image = gr.Image(type='pil', elem_id="input-img")
        mode_input = gr.Radio(['best', 'classic', 'fast'], label='', value='best')
        flavor_input = gr.Number(value=4, label='best mode max flavors')
        
        submit_btn = gr.Button("Submit")
        
        output_text = gr.Textbox(label="Output", elem_id="output-txt")
        
        with gr.Group(elem_id="share-btn-container"):
            community_icon = gr.HTML(community_icon_html, visible=False)
            loading_icon = gr.HTML(loading_icon_html, visible=False)
            share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)

        examples=[['27E894C4-9375-48A1-A95D-CB2425416B4B.png', "best",4], ['DB362F56-BA98-4CA1-A999-A25AA94B723B.png',"fast",4]]
        ex = gr.Examples(examples=examples, fn=inference, inputs=[input_image, mode_input, flavor_input], outputs=[output_text, share_button, community_icon, loading_icon], cache_examples=True, run_on_click=True)
        ex.dataset.headers = [""]
        
        gr.HTML(article)

    submit_btn.click(fn=inference, inputs=[input_image,mode_input,flavor_input], outputs=[output_text, share_button, community_icon, loading_icon])
    share_button.click(None, [], [], _js=share_js)
    
block.queue(max_size=32,concurrency_count=20).launch(show_api=False)