File size: 5,510 Bytes
c705408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import collections.abc as collections
from pathlib import Path
from types import SimpleNamespace
from typing import Callable, List, Optional, Tuple, Union

import cv2
import kornia
import numpy as np
import torch


class ImagePreprocessor:
    default_conf = {
        "resize": None,  # target edge length, None for no resizing
        "side": "long",
        "interpolation": "bilinear",
        "align_corners": None,
        "antialias": True,
    }

    def __init__(self, **conf) -> None:
        super().__init__()
        self.conf = {**self.default_conf, **conf}
        self.conf = SimpleNamespace(**self.conf)

    def __call__(self, img: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """Resize and preprocess an image, return image and resize scale"""
        h, w = img.shape[-2:]
        if self.conf.resize is not None:
            img = kornia.geometry.transform.resize(
                img,
                self.conf.resize,
                side=self.conf.side,
                antialias=self.conf.antialias,
                align_corners=self.conf.align_corners,
            )
        scale = torch.Tensor([img.shape[-1] / w, img.shape[-2] / h]).to(img)
        return img, scale


def map_tensor(input_, func: Callable):
    string_classes = (str, bytes)
    if isinstance(input_, string_classes):
        return input_
    elif isinstance(input_, collections.Mapping):
        return {k: map_tensor(sample, func) for k, sample in input_.items()}
    elif isinstance(input_, collections.Sequence):
        return [map_tensor(sample, func) for sample in input_]
    elif isinstance(input_, torch.Tensor):
        return func(input_)
    else:
        return input_


def batch_to_device(batch: dict, device: str = "cpu", non_blocking: bool = True):
    """Move batch (dict) to device"""

    def _func(tensor):
        return tensor.to(device=device, non_blocking=non_blocking).detach()

    return map_tensor(batch, _func)


def rbd(data: dict) -> dict:
    """Remove batch dimension from elements in data"""
    return {
        k: v[0] if isinstance(v, (torch.Tensor, np.ndarray, list)) else v
        for k, v in data.items()
    }


def read_image(path: Path, grayscale: bool = False) -> np.ndarray:
    """Read an image from path as RGB or grayscale"""
    if not Path(path).exists():
        raise FileNotFoundError(f"No image at path {path}.")
    mode = cv2.IMREAD_GRAYSCALE if grayscale else cv2.IMREAD_COLOR
    image = cv2.imread(str(path), mode)
    if image is None:
        raise IOError(f"Could not read image at {path}.")
    if not grayscale:
        image = image[..., ::-1]
    return image


def numpy_image_to_torch(image: np.ndarray) -> torch.Tensor:
    """Normalize the image tensor and reorder the dimensions."""
    if image.ndim == 3:
        image = image.transpose((2, 0, 1))  # HxWxC to CxHxW
    elif image.ndim == 2:
        image = image[None]  # add channel axis
    else:
        raise ValueError(f"Not an image: {image.shape}")
    return torch.tensor(image / 255.0, dtype=torch.float)


def resize_image(
    image: np.ndarray,
    size: Union[List[int], int],
    fn: str = "max",
    interp: Optional[str] = "area",
) -> np.ndarray:
    """Resize an image to a fixed size, or according to max or min edge."""
    h, w = image.shape[:2]

    fn = {"max": max, "min": min}[fn]
    if isinstance(size, int):
        scale = size / fn(h, w)
        h_new, w_new = int(round(h * scale)), int(round(w * scale))
        scale = (w_new / w, h_new / h)
    elif isinstance(size, (tuple, list)):
        h_new, w_new = size
        scale = (w_new / w, h_new / h)
    else:
        raise ValueError(f"Incorrect new size: {size}")
    mode = {
        "linear": cv2.INTER_LINEAR,
        "cubic": cv2.INTER_CUBIC,
        "nearest": cv2.INTER_NEAREST,
        "area": cv2.INTER_AREA,
    }[interp]
    return cv2.resize(image, (w_new, h_new), interpolation=mode), scale


def load_image(path: Path, resize: int = None, **kwargs) -> torch.Tensor:
    image = read_image(path)
    if resize is not None:
        image, _ = resize_image(image, resize, **kwargs)
    return numpy_image_to_torch(image)


class Extractor(torch.nn.Module):
    def __init__(self, **conf):
        super().__init__()
        self.conf = SimpleNamespace(**{**self.default_conf, **conf})

    @torch.no_grad()
    def extract(self, img: torch.Tensor, **conf) -> dict:
        """Perform extraction with online resizing"""
        if img.dim() == 3:
            img = img[None]  # add batch dim
        assert img.dim() == 4 and img.shape[0] == 1
        shape = img.shape[-2:][::-1]
        img, scales = ImagePreprocessor(**{**self.preprocess_conf, **conf})(img)
        feats = self.forward({"image": img})
        feats["image_size"] = torch.tensor(shape)[None].to(img).float()
        feats["keypoints"] = (feats["keypoints"] + 0.5) / scales[None] - 0.5
        return feats


def match_pair(
    extractor,
    matcher,
    image0: torch.Tensor,
    image1: torch.Tensor,
    device: str = "cpu",
    **preprocess,
):
    """Match a pair of images (image0, image1) with an extractor and matcher"""
    feats0 = extractor.extract(image0, **preprocess)
    feats1 = extractor.extract(image1, **preprocess)
    matches01 = matcher({"image0": feats0, "image1": feats1})
    data = [feats0, feats1, matches01]
    # remove batch dim and move to target device
    feats0, feats1, matches01 = [batch_to_device(rbd(x), device) for x in data]
    return feats0, feats1, matches01