Spaces:
Running
on
L40S
Running
on
L40S
File size: 16,633 Bytes
c705408 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import sys
from pyparsing import col
sys.path.insert(0,".")
import argparse
from packaging import version
import glob
import os
from LightGlue.lightglue import LightGlue, SuperPoint, DISK, SIFT, ALIKED, DoGHardNet
from LightGlue.lightglue.utils import load_image, rbd
from cotracker.predictor import CoTrackerPredictor, sample_trajectories, generate_gassian_heatmap, sample_trajectories_with_ref
import torch
from diffusers.utils.import_utils import is_xformers_available
from models_diffusers.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
from pipelines.AniDoc import AniDocPipeline
from models_diffusers.controlnet_svd import ControlNetSVDModel
from diffusers.utils import load_image, export_to_video, export_to_gif
import time
from lineart_extractor.annotator.lineart import LineartDetector
import numpy as np
from PIL import Image
from utils import load_images_from_folder,export_gif_with_ref,export_gif_side_by_side,extract_frames_from_video,safe_round,select_multiple_points,generate_point_map,generate_point_map_frames,export_gif_side_by_side_complete,export_gif_side_by_side_complete_ablation
import random
import torchvision.transforms as T
from LightGlue.lightglue import viz2d
import matplotlib.pyplot as plt
from cotracker.utils.visualizer import Visualizer, read_video_from_path
from torchvision.transforms import PILToTensor
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_model_name_or_path", type=str, default="pretrained_weights/stable-video-diffusion-img2vid-xt", help="Path to the input image.")
parser.add_argument(
"--pretrained_unet", type=str, help="Path to the input image.",
default="pretrained_weights/anidoc"
)
parser.add_argument(
"--controlnet_model_name_or_path", type=str, help="Path to the input image.",
default="pretrained_weights/anidoc/controlnet"
)
parser.add_argument("--output_dir", type=str, default=None, help="Path to the output video.")
parser.add_argument("--seed", type=int, default=42, help="random seed.")
parser.add_argument("--noise_aug", type=float, default=0.02)
parser.add_argument("--num_frames", type=int, default=14)
parser.add_argument("--width", type=int, default=512)
parser.add_argument("--height", type=int, default=320)
parser.add_argument("--all_sketch",action="store_true",help="all_sketch")
parser.add_argument("--not_quant_sketch",action="store_true",help="not_quant_sketch")
parser.add_argument("--repeat_sketch",action="store_true",help="not_quant_sketch")
parser.add_argument("--matching",action="store_true",help="add keypoint matching")
parser.add_argument("--tracking",action="store_true",help="tracking keypoint")
parser.add_argument("--repeat_matching",action="store_true",help="not tracking, but just simply repeat")
parser.add_argument("--tracker_point_init", type=str, default='gaussion', choices=['dift', 'gaussion', 'both'], help="Regular grid size")
parser.add_argument(
"--tracker_shift_grid",
type=int, default=0, choices=[0, 1],
help="shift the grid for the tracker")
parser.add_argument("--tracker_grid_size", type=int, default=8, help="Regular grid size")
parser.add_argument(
"--tracker_grid_query_frame",
type=int,
default=0,
help="Compute dense and grid tracks starting from this frame",
)
parser.add_argument(
"--tracker_backward_tracking",
action="store_true",
help="Compute tracks in both directions, not only forward",
)
parser.add_argument("--control_image", type=str, default=None, help="Path to the output video.")
parser.add_argument("--ref_image", type=str, default=None, help="Path to the output video.")
parser.add_argument("--max_points", type=int, default=10)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
dtype = torch.float16
unet = UNetSpatioTemporalConditionModel.from_pretrained(
args.pretrained_unet,
subfolder="unet",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
custom_resume=True,
)
unet.to("cuda",dtype)
if args.controlnet_model_name_or_path:
controlnet = ControlNetSVDModel.from_pretrained(
args.controlnet_model_name_or_path,
)
else:
controlnet = ControlNetSVDModel.from_unet(
unet,
conditioning_channels=8
)
controlnet.to("cuda",dtype)
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError(
"xformers is not available. Make sure it is installed correctly")
pipe = AniDocPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unet,
controlnet=controlnet,
low_cpu_mem_usage=False,
torch_dtype=torch.float16, variant="fp16"
)
pipe.to("cuda")
device = "cuda"
detector = LineartDetector(device)
extractor = SuperPoint(max_num_keypoints=2000).eval().to(device) # load the extractor
matcher = LightGlue(features='superpoint').eval().to(device) # load the matcher
tracker = CoTrackerPredictor(
checkpoint="pretrained_weights/cotracker2.pth",
shift_grid=args.tracker_shift_grid,
)
tracker.requires_grad_(False)
tracker.to(device, dtype=torch.float32)
width, height = args.width, args.height
# image = load_image('dalle3_cat.jpg')
if args.output_dir is None:
args.output_dir = "results"
os.makedirs(args.output_dir, exist_ok=True)
image_folder_list=[
'data_test/sample1.mp4',
]
ref_image_list=[
"data_test/sample1.png",
]
if args.ref_image is not None and args.control_image is not None:
ref_image_list=[args.ref_image]
image_folder_list=[args.control_image]
for val_id ,each_sample in enumerate(image_folder_list):
if os.path.isdir(each_sample):
control_images=load_images_from_folder(each_sample)
elif each_sample.endswith(".mp4"):
control_images = extract_frames_from_video(each_sample)
ref_image=load_image(ref_image_list[val_id]).resize((width, height))
#resize:
for j, each in enumerate(control_images):
control_images[j]=control_images[j].resize((width, height))
# load image from folder
if args.all_sketch:
controlnet_image=[]
for k in range(len(control_images)):
sketch=control_images[k]
sketch = np.array(sketch)
sketch=detector(sketch,coarse=False)
sketch=np.repeat(sketch[:, :, np.newaxis], 3, axis=2)
if args.not_quant_sketch:
pass
else:
sketch= (sketch > 200).astype(np.uint8)*255
sketch = Image.fromarray(sketch).resize((width, height))
controlnet_image.append(sketch)
controlnet_sketch_condition = [T.ToTensor()(img).unsqueeze(0) for img in controlnet_image]
controlnet_sketch_condition = torch.cat(controlnet_sketch_condition, dim=0).unsqueeze(0).to(device, dtype=torch.float16)
controlnet_sketch_condition = (controlnet_sketch_condition - 0.5) / 0.5 #(1,14,3,h,w)
# matching condition
with torch.no_grad():
ref_img_value = T.ToTensor()(ref_image).to(device, dtype=torch.float16) #(0,1)
ref_img_value = ref_img_value.to(torch.float32)
current_img= T.ToTensor()(controlnet_image[0]).to(device, dtype=torch.float16) #(0,1)
current_img = current_img.to(torch.float32)
feats0 = extractor.extract(ref_img_value)
feats1 = extractor.extract(current_img)
matches01 = matcher({'image0': feats0, 'image1': feats1})
feats0, feats1, matches01 = [rbd(x) for x in [feats0, feats1, matches01]]
matches = matches01['matches']
points0 = feats0['keypoints'][matches[..., 0]]
points1 = feats1['keypoints'][matches[..., 1]]
points0 = points0.cpu().numpy()
# points0_org=points0.copy()
points1 = points1.cpu().numpy()
points0 = safe_round(points0, current_img.shape)
points1 = safe_round(points1, current_img.shape)
num_points = min(50, points0.shape[0])
points0,points1 = select_multiple_points(points0, points1, num_points)
mask1, mask2 = generate_point_map(size=current_img.shape, coords0=points0, coords1=points1)
# import ipdb;ipdb.set_trace()
point_map1=torch.from_numpy(mask1)
point_map2=torch.from_numpy(mask2)
point_map1 = point_map1.unsqueeze(0).unsqueeze(0).unsqueeze(0).to(device, dtype=torch.float16)
point_map2 = point_map2.unsqueeze(0).unsqueeze(0).unsqueeze(0).to(device, dtype=torch.float16)
point_map=torch.cat([point_map1,point_map2],dim=2)
conditional_pixel_values=ref_img_value.unsqueeze(0).unsqueeze(0)
conditional_pixel_values = (conditional_pixel_values - 0.5) / 0.5
point_map_with_ref= torch.cat([point_map,conditional_pixel_values],dim=2)
original_shape = list(point_map_with_ref.shape)
new_shape = original_shape.copy()
new_shape[1] = args.num_frames-1
if args.repeat_matching:
matching_controlnet_image=point_map_with_ref.repeat(1,args.num_frames,1,1,1)
controlnet_condition=torch.cat([controlnet_sketch_condition, matching_controlnet_image], dim=2)
elif args.tracking:
with torch.no_grad():
video_for_tracker = (controlnet_sketch_condition * 0.5 + 0.5) * 255.
queries = np.insert(points1,0,0,axis=1)
queries =torch.from_numpy(queries).to(device,torch.float).unsqueeze(0)
if queries.shape[1]==0:
pred_tracks_sampled=None
points0_sampled = None
else:
pred_tracks, pred_visibility = tracker(
video_for_tracker.to(dtype=torch.float32),
queries=queries,
grid_size=args.tracker_grid_size, # 8
grid_query_frame=args.tracker_grid_query_frame, # 0
backward_tracking=args.tracker_backward_tracking, # False
# segm_mask=segm_mask,
)
pred_tracks_sampled, pred_visibility_sampled,points0_sampled = sample_trajectories_with_ref(
pred_tracks.cpu(), pred_visibility.cpu(), torch.from_numpy(points0).unsqueeze(0).cpu(),
max_points=args.max_points,
motion_threshold=1,
vis_threshold=3,
)
if pred_tracks_sampled is None:
mask1 = np.zeros((args.height, args.width), dtype=np.uint8)
mask2 = np.zeros((args.num_frames,args.height, args.width), dtype=np.uint8)
else:
pred_tracks_sampled = pred_tracks_sampled.squeeze(0).cpu().numpy()
pred_visibility_sampled =pred_visibility_sampled.squeeze(0).cpu().numpy()
points0_sampled =points0_sampled.squeeze(0).cpu().numpy()
for frame_id in range(args.num_frames):
pred_tracks_sampled[frame_id] = safe_round(pred_tracks_sampled[frame_id],current_img.shape)
points0_sampled = safe_round(points0_sampled,current_img.shape)
mask1, mask2 = generate_point_map_frames(size=current_img.shape, coords0=points0_sampled,coords1=pred_tracks_sampled,visibility=pred_visibility_sampled)
point_map1=torch.from_numpy(mask1)
point_map2=torch.from_numpy(mask2)
point_map1 = point_map1.unsqueeze(0).unsqueeze(0).repeat(1,args.num_frames,1,1,1).to(device, dtype=torch.float16)
point_map2 = point_map2.unsqueeze(0).unsqueeze(2).to(device, dtype=torch.float16)
point_map=torch.cat([point_map1,point_map2],dim=2)
conditional_pixel_values_repeat=conditional_pixel_values.repeat(1,14,1,1,1)
point_map_with_ref= torch.cat([point_map,conditional_pixel_values_repeat],dim=2)
controlnet_condition= torch.cat([controlnet_sketch_condition, point_map_with_ref], dim=2)
else:
zero_tensor = torch.zeros(new_shape).to(device, dtype=torch.float16)
matching_controlnet_image=torch.cat((point_map_with_ref,zero_tensor),dim=1)
controlnet_condition = torch.cat([controlnet_sketch_condition, matching_controlnet_image], dim=2)
ref_base_name=os.path.splitext(os.path.basename(ref_image_list[val_id]))[0]
sketch_base_name=os.path.splitext(os.path.basename(each_sample))[0]
supp_dir=os.path.join(args.output_dir,ref_base_name+"_"+sketch_base_name)
os.makedirs(supp_dir, exist_ok=True)
elif args.repeat_sketch:
controlnet_image=[]
for i_2 in range(int(len(control_images)/2)):
sketch=control_images[0]
sketch = np.array(sketch)
sketch=detector(sketch,coarse=False)
sketch=np.repeat(sketch[:, :, np.newaxis], 3, axis=2)
if args.not_quant_sketch:
pass
else:
sketch= (sketch > 200).astype(np.uint8)*255
sketch = Image.fromarray(sketch)
controlnet_image.append(sketch)
for i_3 in range(int(len(control_images)/2)):
sketch=control_images[-1]
sketch = np.array(sketch)
sketch=detector(sketch,coarse=False)
sketch=np.repeat(sketch[:, :, np.newaxis], 3, axis=2)
if args.not_quant_sketch:
pass
else:
sketch= (sketch > 200).astype(np.uint8)*255
sketch = Image.fromarray(sketch)
controlnet_image.append(sketch)
generator = torch.manual_seed(args.seed)
with torch.inference_mode():
video_frames = pipe(
ref_image,
controlnet_condition,
height=args.height,
width=args.width,
num_frames=14,
decode_chunk_size=8,
motion_bucket_id=127,
fps=7,
noise_aug_strength=0.02,
generator=generator,
).frames[0]
out_file = supp_dir+'.mp4'
if args.all_sketch:
export_gif_side_by_side_complete_ablation(ref_image,controlnet_image,video_frames,out_file.replace('.mp4','.gif'),supp_dir,6)
elif args.repeat_sketch:
export_gif_with_ref(control_images[0],video_frames,controlnet_image[-1],controlnet_image[0],out_file.replace('.mp4','.gif'),6)
|