File size: 16,633 Bytes
c705408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import sys

from pyparsing import col
sys.path.insert(0,".")

import argparse
from packaging import version
import glob
import os
from LightGlue.lightglue import LightGlue, SuperPoint, DISK, SIFT, ALIKED, DoGHardNet
from LightGlue.lightglue.utils import load_image, rbd
from cotracker.predictor import CoTrackerPredictor, sample_trajectories, generate_gassian_heatmap, sample_trajectories_with_ref
import torch
from diffusers.utils.import_utils import is_xformers_available

from models_diffusers.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
from pipelines.AniDoc import AniDocPipeline
from models_diffusers.controlnet_svd import ControlNetSVDModel
from diffusers.utils import load_image, export_to_video, export_to_gif
import time
from lineart_extractor.annotator.lineart import LineartDetector
import numpy as np
from PIL import Image
from utils import load_images_from_folder,export_gif_with_ref,export_gif_side_by_side,extract_frames_from_video,safe_round,select_multiple_points,generate_point_map,generate_point_map_frames,export_gif_side_by_side_complete,export_gif_side_by_side_complete_ablation
import random
import torchvision.transforms as T
from LightGlue.lightglue import viz2d
import matplotlib.pyplot as plt
from cotracker.utils.visualizer import Visualizer, read_video_from_path
from torchvision.transforms import PILToTensor



def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--pretrained_model_name_or_path", type=str, default="pretrained_weights/stable-video-diffusion-img2vid-xt", help="Path to the input image.")

    parser.add_argument(
        "--pretrained_unet", type=str, help="Path to the input image.",
 
        default="pretrained_weights/anidoc"

    )
    parser.add_argument(
        "--controlnet_model_name_or_path", type=str, help="Path to the input image.",
      default="pretrained_weights/anidoc/controlnet"
    )
    parser.add_argument("--output_dir", type=str, default=None, help="Path to the output video.")
    parser.add_argument("--seed", type=int, default=42, help="random seed.")

    parser.add_argument("--noise_aug", type=float, default=0.02)

    parser.add_argument("--num_frames", type=int, default=14)
    parser.add_argument("--width", type=int, default=512)
    parser.add_argument("--height", type=int, default=320)
    parser.add_argument("--all_sketch",action="store_true",help="all_sketch")
    parser.add_argument("--not_quant_sketch",action="store_true",help="not_quant_sketch")
    parser.add_argument("--repeat_sketch",action="store_true",help="not_quant_sketch")
    parser.add_argument("--matching",action="store_true",help="add keypoint matching")
    parser.add_argument("--tracking",action="store_true",help="tracking keypoint")
    parser.add_argument("--repeat_matching",action="store_true",help="not tracking, but just simply repeat")
    parser.add_argument("--tracker_point_init", type=str, default='gaussion', choices=['dift', 'gaussion', 'both'], help="Regular grid size")
    parser.add_argument(
        "--tracker_shift_grid",
        type=int, default=0, choices=[0, 1],
        help="shift the grid for the tracker")
    parser.add_argument("--tracker_grid_size", type=int, default=8, help="Regular grid size")
    parser.add_argument(
        "--tracker_grid_query_frame",
        type=int,
        default=0,
        help="Compute dense and grid tracks starting from this frame",
    )
    parser.add_argument(
        "--tracker_backward_tracking",
        action="store_true",
        help="Compute tracks in both directions, not only forward",
    )
    parser.add_argument("--control_image", type=str, default=None, help="Path to the output video.")
    parser.add_argument("--ref_image", type=str, default=None, help="Path to the output video.")
    parser.add_argument("--max_points", type=int, default=10)

    args = parser.parse_args()

    return args


if __name__ == "__main__":

    args = get_args()
    dtype = torch.float16


    unet = UNetSpatioTemporalConditionModel.from_pretrained(

            args.pretrained_unet,
            subfolder="unet",
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True,
            custom_resume=True,
        )

    unet.to("cuda",dtype)
 
    if args.controlnet_model_name_or_path:

        controlnet = ControlNetSVDModel.from_pretrained(
            args.controlnet_model_name_or_path,
        )
    else:

        controlnet = ControlNetSVDModel.from_unet(
            unet,
            conditioning_channels=8
        )
    controlnet.to("cuda",dtype)
    if is_xformers_available():
        import xformers
        xformers_version = version.parse(xformers.__version__)
        unet.enable_xformers_memory_efficient_attention()
    else:
        raise ValueError(
            "xformers is not available. Make sure it is installed correctly")

    pipe = AniDocPipeline.from_pretrained(
 
        args.pretrained_model_name_or_path,
        unet=unet,
        controlnet=controlnet,
        low_cpu_mem_usage=False,
        torch_dtype=torch.float16, variant="fp16"
    )
    pipe.to("cuda")
    device = "cuda"
    detector = LineartDetector(device) 
    extractor = SuperPoint(max_num_keypoints=2000).eval().to(device)  # load the extractor
    matcher = LightGlue(features='superpoint').eval().to(device)  # load the matcher

    tracker = CoTrackerPredictor(
        checkpoint="pretrained_weights/cotracker2.pth",
        shift_grid=args.tracker_shift_grid,
    )
    tracker.requires_grad_(False)
    tracker.to(device, dtype=torch.float32)


    width, height = args.width, args.height

    # image = load_image('dalle3_cat.jpg')
    if args.output_dir is None:
            args.output_dir = "results"
    os.makedirs(args.output_dir, exist_ok=True)

    image_folder_list=[
        'data_test/sample1.mp4',
    ]

    ref_image_list=[
        "data_test/sample1.png",
    ]
    if args.ref_image is not None and args.control_image is not None:
        ref_image_list=[args.ref_image]
        image_folder_list=[args.control_image]

                    

    for val_id ,each_sample in enumerate(image_folder_list):
        if os.path.isdir(each_sample):
  
            control_images=load_images_from_folder(each_sample)
        elif each_sample.endswith(".mp4"):
            control_images = extract_frames_from_video(each_sample)
        ref_image=load_image(ref_image_list[val_id]).resize((width, height))


    #resize:
        for j, each in enumerate(control_images):
            control_images[j]=control_images[j].resize((width, height))

    # load image from folder
        if args.all_sketch:
                controlnet_image=[]
                for k in range(len(control_images)):
                    sketch=control_images[k]
                    sketch = np.array(sketch)
                    sketch=detector(sketch,coarse=False)
                    sketch=np.repeat(sketch[:, :, np.newaxis], 3, axis=2)
                    if args.not_quant_sketch:
                        pass
                    else:
                        sketch= (sketch > 200).astype(np.uint8)*255
                    sketch = Image.fromarray(sketch).resize((width, height))
           
                    controlnet_image.append(sketch)

                controlnet_sketch_condition = [T.ToTensor()(img).unsqueeze(0) for img in controlnet_image]
                controlnet_sketch_condition = torch.cat(controlnet_sketch_condition, dim=0).unsqueeze(0).to(device, dtype=torch.float16)
                controlnet_sketch_condition = (controlnet_sketch_condition - 0.5) / 0.5  #(1,14,3,h,w)
                # matching condition
                with torch.no_grad():
                    ref_img_value = T.ToTensor()(ref_image).to(device, dtype=torch.float16)  #(0,1)
                    
                    ref_img_value = ref_img_value.to(torch.float32)
                    current_img= T.ToTensor()(controlnet_image[0]).to(device, dtype=torch.float16)  #(0,1)
                    current_img = current_img.to(torch.float32)
                    feats0 = extractor.extract(ref_img_value)  
                    feats1 = extractor.extract(current_img)
                    matches01 = matcher({'image0': feats0, 'image1': feats1})
                    feats0, feats1, matches01 = [rbd(x) for x in [feats0, feats1, matches01]]  
                    matches = matches01['matches']  
                    points0 = feats0['keypoints'][matches[..., 0]]  
                    points1 = feats1['keypoints'][matches[..., 1]]
                    points0 = points0.cpu().numpy()
                    # points0_org=points0.copy()
                    points1 = points1.cpu().numpy()
                
                    points0 = safe_round(points0, current_img.shape)
                    points1 = safe_round(points1, current_img.shape)

                    num_points = min(50, points0.shape[0])
                    points0,points1 = select_multiple_points(points0, points1, num_points)
                    mask1, mask2 = generate_point_map(size=current_img.shape, coords0=points0, coords1=points1)
                    # import ipdb;ipdb.set_trace()
                    point_map1=torch.from_numpy(mask1)
                    point_map2=torch.from_numpy(mask2)
                    point_map1 = point_map1.unsqueeze(0).unsqueeze(0).unsqueeze(0).to(device, dtype=torch.float16)
                    point_map2 = point_map2.unsqueeze(0).unsqueeze(0).unsqueeze(0).to(device, dtype=torch.float16)
                    point_map=torch.cat([point_map1,point_map2],dim=2)
                    conditional_pixel_values=ref_img_value.unsqueeze(0).unsqueeze(0)
                    conditional_pixel_values = (conditional_pixel_values - 0.5) / 0.5
                   
                    point_map_with_ref= torch.cat([point_map,conditional_pixel_values],dim=2)
                    original_shape = list(point_map_with_ref.shape)
                    new_shape = original_shape.copy()
                    new_shape[1] = args.num_frames-1

                    if args.repeat_matching:
                        matching_controlnet_image=point_map_with_ref.repeat(1,args.num_frames,1,1,1)
                        controlnet_condition=torch.cat([controlnet_sketch_condition, matching_controlnet_image], dim=2)
                    elif args.tracking:
                        with torch.no_grad():
                            video_for_tracker = (controlnet_sketch_condition * 0.5 + 0.5) * 255.
                            queries = np.insert(points1,0,0,axis=1)
                            queries =torch.from_numpy(queries).to(device,torch.float).unsqueeze(0)
                           
                            if queries.shape[1]==0:
                                pred_tracks_sampled=None
                                points0_sampled = None
                            else:
                                pred_tracks, pred_visibility = tracker(
                                    video_for_tracker.to(dtype=torch.float32),
                                    queries=queries,
                                    grid_size=args.tracker_grid_size,  # 8
                                    grid_query_frame=args.tracker_grid_query_frame,  # 0
                                    backward_tracking=args.tracker_backward_tracking,  # False
                                    # segm_mask=segm_mask,
                                )
                                pred_tracks_sampled, pred_visibility_sampled,points0_sampled = sample_trajectories_with_ref(
                                    pred_tracks.cpu(), pred_visibility.cpu(), torch.from_numpy(points0).unsqueeze(0).cpu(),
                                    max_points=args.max_points,
                                    motion_threshold=1,
                                    vis_threshold=3,
                                )  
                            if pred_tracks_sampled is None:
                                mask1 = np.zeros((args.height, args.width), dtype=np.uint8)
                                mask2 = np.zeros((args.num_frames,args.height, args.width), dtype=np.uint8)
                            else:
                                pred_tracks_sampled = pred_tracks_sampled.squeeze(0).cpu().numpy()
                                pred_visibility_sampled =pred_visibility_sampled.squeeze(0).cpu().numpy()
                                points0_sampled =points0_sampled.squeeze(0).cpu().numpy()
                                for frame_id in range(args.num_frames):
                                        pred_tracks_sampled[frame_id] = safe_round(pred_tracks_sampled[frame_id],current_img.shape)
                                points0_sampled = safe_round(points0_sampled,current_img.shape)
                                
                                mask1, mask2 = generate_point_map_frames(size=current_img.shape, coords0=points0_sampled,coords1=pred_tracks_sampled,visibility=pred_visibility_sampled)
                             
                            point_map1=torch.from_numpy(mask1)
                            point_map2=torch.from_numpy(mask2)
                            point_map1 = point_map1.unsqueeze(0).unsqueeze(0).repeat(1,args.num_frames,1,1,1).to(device, dtype=torch.float16)
                            point_map2 = point_map2.unsqueeze(0).unsqueeze(2).to(device, dtype=torch.float16)
                            point_map=torch.cat([point_map1,point_map2],dim=2)   

                            conditional_pixel_values_repeat=conditional_pixel_values.repeat(1,14,1,1,1)
                        
                            point_map_with_ref= torch.cat([point_map,conditional_pixel_values_repeat],dim=2)  
                            controlnet_condition= torch.cat([controlnet_sketch_condition, point_map_with_ref], dim=2)   
                    else:
                        zero_tensor = torch.zeros(new_shape).to(device, dtype=torch.float16)
                        matching_controlnet_image=torch.cat((point_map_with_ref,zero_tensor),dim=1)
                        controlnet_condition = torch.cat([controlnet_sketch_condition, matching_controlnet_image], dim=2)
                            

                    ref_base_name=os.path.splitext(os.path.basename(ref_image_list[val_id]))[0]  
                    sketch_base_name=os.path.splitext(os.path.basename(each_sample))[0] 
                    supp_dir=os.path.join(args.output_dir,ref_base_name+"_"+sketch_base_name)  
                    os.makedirs(supp_dir, exist_ok=True)  
          
        elif args.repeat_sketch:
            controlnet_image=[]
            for i_2 in range(int(len(control_images)/2)):
                sketch=control_images[0]
                sketch = np.array(sketch)
                sketch=detector(sketch,coarse=False)
                sketch=np.repeat(sketch[:, :, np.newaxis], 3, axis=2)
               
                if args.not_quant_sketch:
                    pass
                else:
                    sketch= (sketch > 200).astype(np.uint8)*255
                sketch = Image.fromarray(sketch)
                controlnet_image.append(sketch)
            for i_3 in range(int(len(control_images)/2)):
                sketch=control_images[-1]


                
                sketch = np.array(sketch)
                sketch=detector(sketch,coarse=False)
                sketch=np.repeat(sketch[:, :, np.newaxis], 3, axis=2)
                
                if args.not_quant_sketch:
                    pass
                else:
                    sketch= (sketch > 200).astype(np.uint8)*255
                sketch = Image.fromarray(sketch)
               
                controlnet_image.append(sketch)


                
        generator = torch.manual_seed(args.seed)


        with torch.inference_mode():
            video_frames = pipe(
                ref_image, 
                controlnet_condition,
                height=args.height,
                width=args.width,
                num_frames=14,
                decode_chunk_size=8,
                motion_bucket_id=127,
                fps=7,
                noise_aug_strength=0.02,
                generator=generator,
            ).frames[0]   




        out_file = supp_dir+'.mp4'


        if args.all_sketch:
        

            export_gif_side_by_side_complete_ablation(ref_image,controlnet_image,video_frames,out_file.replace('.mp4','.gif'),supp_dir,6)
  
        elif args.repeat_sketch:
            export_gif_with_ref(control_images[0],video_frames,controlnet_image[-1],controlnet_image[0],out_file.replace('.mp4','.gif'),6)