File size: 12,273 Bytes
7a986e7
f2c28c8
 
7a986e7
 
 
f2c28c8
 
b75380d
c30c8d7
4234218
 
 
 
d5fb548
f2c28c8
7a986e7
 
 
 
 
 
 
 
 
 
 
 
 
c30c8d7
7a986e7
 
 
 
 
 
 
 
 
c30c8d7
7a986e7
 
 
 
 
 
 
 
 
 
 
 
 
131b493
 
 
 
 
 
 
 
 
 
7a986e7
 
 
 
 
0eb72c7
7a986e7
c30c8d7
7a986e7
 
0eb72c7
 
 
c30c8d7
0eb72c7
 
 
 
 
b75380d
7a986e7
0eb72c7
 
 
 
 
 
 
c30c8d7
0eb72c7
 
 
 
 
 
 
 
 
 
7a986e7
131b493
 
 
 
 
 
 
 
 
 
 
 
4234218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a986e7
f2c28c8
131b493
c30c8d7
d5fb548
 
131b493
 
 
 
 
8a1d3d2
 
 
 
 
 
 
 
f192f0b
d5fb548
 
8a1d3d2
 
 
 
 
c30c8d7
 
d5fb548
 
c73c262
8a1d3d2
c73c262
 
8a1d3d2
 
4234218
d5fb548
 
 
 
8a1d3d2
d5fb548
 
 
 
c73c262
d5fb548
 
 
 
 
 
 
 
 
 
 
8a1d3d2
d5fb548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c73c262
 
d5fb548
c73c262
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import cv2
import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
from transformers import AutoImageProcessor, Swinv2ForImageClassification, SegformerForSemanticSegmentation
import streamlit as st
from PIL import Image
import io
import zipfile
import pandas as pd
from datetime import datetime
import os
import tempfile
import base64

# --- GlaucomaModel Class ---
class GlaucomaModel(object):
    def __init__(self, 
                 cls_model_path="pamixsun/swinv2_tiny_for_glaucoma_classification", 
                 seg_model_path='pamixsun/segformer_for_optic_disc_cup_segmentation',
                 device=torch.device('cpu')):
        self.device = device
        # Classification model for glaucoma
        self.cls_extractor = AutoImageProcessor.from_pretrained(cls_model_path)
        self.cls_model = Swinv2ForImageClassification.from_pretrained(cls_model_path).to(device).eval()
        # Segmentation model for optic disc and cup
        self.seg_extractor = AutoImageProcessor.from_pretrained(seg_model_path)
        self.seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_path).to(device).eval()
        # Mapping for class labels
        self.cls_id2label = self.cls_model.config.id2label

    def glaucoma_pred(self, image):
        inputs = self.cls_extractor(images=image.copy(), return_tensors="pt")
        with torch.no_grad():
            inputs.to(self.device)
            outputs = self.cls_model(**inputs).logits
            probs = F.softmax(outputs, dim=-1)
            disease_idx = probs.cpu()[0, :].numpy().argmax()
            confidence = probs.cpu()[0, disease_idx].item() * 100
        return disease_idx, confidence

    def optic_disc_cup_pred(self, image):
        inputs = self.seg_extractor(images=image.copy(), return_tensors="pt")
        with torch.no_grad():
            inputs.to(self.device)
            outputs = self.seg_model(**inputs)
        logits = outputs.logits.cpu()
        upsampled_logits = nn.functional.interpolate(
            logits, size=image.shape[:2], mode="bilinear", align_corners=False
        )
        seg_probs = F.softmax(upsampled_logits, dim=1)
        pred_disc_cup = upsampled_logits.argmax(dim=1)[0]
        
        # Calculate segmentation confidence based on probability distribution
        # For each pixel classified as cup/disc, check how confident the model is
        cup_mask = pred_disc_cup == 2
        disc_mask = pred_disc_cup == 1
        
        # Get confidence only for pixels predicted as cup/disc
        cup_confidence = seg_probs[0, 2, cup_mask].mean().item() * 100 if cup_mask.any() else 0
        disc_confidence = seg_probs[0, 1, disc_mask].mean().item() * 100 if disc_mask.any() else 0
        
        return pred_disc_cup.numpy().astype(np.uint8), cup_confidence, disc_confidence

    def process(self, image):
        disease_idx, cls_confidence = self.glaucoma_pred(image)
        disc_cup, cup_confidence, disc_confidence = self.optic_disc_cup_pred(image)

        try:
            vcdr = simple_vcdr(disc_cup)
        except:
            vcdr = np.nan

        mask = (disc_cup > 0).astype(np.uint8)
        x, y, w, h = cv2.boundingRect(mask)
        padding = max(50, int(0.2 * max(w, h)))
        x = max(x - padding, 0)
        y = max(y - padding, 0)
        w = min(w + 2 * padding, image.shape[1] - x)
        h = min(h + 2 * padding, image.shape[0] - y)

        cropped_image = image[y:y+h, x:x+w] if w >= 50 and h >= 50 else image.copy()
        _, disc_cup_image = add_mask(image, disc_cup, [1, 2], [[0, 255, 0], [255, 0, 0]], 0.2)

        return disease_idx, disc_cup_image, vcdr, cls_confidence, cup_confidence, disc_confidence, cropped_image

# --- Utility Functions ---
def simple_vcdr(mask):
    disc_area = np.sum(mask == 1)
    cup_area = np.sum(mask == 2)
    if disc_area == 0:
        return np.nan
    vcdr = cup_area / disc_area
    return vcdr

def add_mask(image, mask, classes, colors, alpha=0.5):
    overlay = image.copy()
    for class_id, color in zip(classes, colors):
        overlay[mask == class_id] = color
    output = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)
    return output, overlay

def get_confidence_level(confidence):
    if confidence >= 90:
        return "Very High"
    elif confidence >= 75:
        return "High"
    elif confidence >= 60:
        return "Moderate"
    elif confidence >= 45:
        return "Low"
    else:
        return "Very Low"

def process_batch(model, images_data, progress_bar=None):
    results = []
    for idx, (file_name, image) in enumerate(images_data):
        try:
            disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image)
            results.append({
                'file_name': file_name,
                'diagnosis': model.cls_id2label[disease_idx],
                'confidence': cls_conf,
                'vcdr': vcdr,
                'cup_conf': cup_conf,
                'disc_conf': disc_conf,
                'processed_image': disc_cup_image,
                'cropped_image': cropped_image
            })
            if progress_bar:
                progress_bar.progress((idx + 1) / len(images_data))
        except Exception as e:
            st.error(f"Error processing {file_name}: {str(e)}")
    return results

def save_results(results, original_images):
    # Create temporary directory for results
    with tempfile.TemporaryDirectory() as temp_dir:
        # Save report as CSV
        df = pd.DataFrame([{
            'File': r['file_name'],
            'Diagnosis': r['diagnosis'],
            'Confidence (%)': f"{r['confidence']:.1f}",
            'VCDR': f"{r['vcdr']:.3f}",
            'Cup Confidence (%)': f"{r['cup_conf']:.1f}",
            'Disc Confidence (%)': f"{r['disc_conf']:.1f}"
        } for r in results])
        
        report_path = os.path.join(temp_dir, 'report.csv')
        df.to_csv(report_path, index=False)
        
        # Save processed images
        for result, orig_img in zip(results, original_images):
            img_name = result['file_name']
            base_name = os.path.splitext(img_name)[0]
            
            # Save original
            orig_path = os.path.join(temp_dir, f"{base_name}_original.jpg")
            Image.fromarray(orig_img).save(orig_path)
            
            # Save segmentation
            seg_path = os.path.join(temp_dir, f"{base_name}_segmentation.jpg")
            Image.fromarray(result['processed_image']).save(seg_path)
            
            # Save ROI
            roi_path = os.path.join(temp_dir, f"{base_name}_roi.jpg")
            Image.fromarray(result['cropped_image']).save(roi_path)
        
        # Create ZIP file
        zip_path = os.path.join(temp_dir, 'results.zip')
        with zipfile.ZipFile(zip_path, 'w') as zipf:
            for root, _, files in os.walk(temp_dir):
                for file in files:
                    if file != 'results.zip':
                        file_path = os.path.join(root, file)
                        arcname = os.path.basename(file_path)
                        zipf.write(file_path, arcname)
        
        with open(zip_path, 'rb') as f:
            return f.read()

# --- Streamlit Interface ---
def main():
    st.set_page_config(layout="wide", page_title="Glaucoma Screening Tool")
    
    print("App started") # Debug print
    
    st.markdown("""
        <h1 style='text-align: center;'>Glaucoma Screening from Retinal Fundus Images</h1>
        <p style='text-align: center; color: gray;'>Upload retinal images for automated glaucoma detection and optic disc/cup segmentation</p>
        """, unsafe_allow_html=True)
    
    # Simple sidebar without columns
    st.sidebar.markdown("### 📤 Upload Images")
    uploaded_files = st.sidebar.file_uploader(
        "Upload Retinal Images", 
        type=['png', 'jpeg', 'jpg'], 
        accept_multiple_files=True,
        help="Support multiple images in PNG, JPEG formats"
    )
    
    print(f"Files uploaded: {uploaded_files}") # Debug print
    
    st.sidebar.markdown("### Settings")
    max_batch = st.sidebar.number_input("Max Batch Size", 
        min_value=1, 
        max_value=100, 
        value=20)
    
    if uploaded_files:
        print("Processing uploaded files") # Debug print
        
        if len(uploaded_files) > max_batch:
            st.warning(f"Please upload maximum {max_batch} images at once.")
            return

        st.markdown(f"Total images: {len(uploaded_files)}")
        st.markdown(f"Using: {'GPU' if torch.cuda.is_available() else 'CPU'}")
        
        try:
            # Initialize model
            print("Initializing model") # Debug print
            model = GlaucomaModel(device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
            
            # Process images
            images_data = []
            original_images = []
            print("Starting image processing") # Debug print
            
            for file in uploaded_files:
                try:
                    print(f"Processing file: {file.name}") # Debug print
                    image = Image.open(file).convert('RGB')
                    image_np = np.array(image)
                    images_data.append((file.name, image_np))
                    original_images.append(image_np)
                except Exception as e:
                    print(f"Error processing file {file.name}: {str(e)}") # Debug print
                    st.error(f"Error loading {file.name}: {str(e)}")
                    continue
            
            if not images_data:
                st.error("No valid images to process!")
                return
                
            progress = st.progress(0)
            st.write(f"Processing {len(images_data)} images...")
            
            # Process all images
            print("Starting batch processing") # Debug print
            results = process_batch(model, images_data, progress)
            print(f"Batch processing complete. Results: {len(results)}") # Debug print
            
            if results:
                print("Showing results") # Debug print
                # Show results one by one
                for result in results:
                    st.markdown(f"### Results for {result['file_name']}")
                    st.markdown(f"**Diagnosis:** {result['diagnosis']}")
                    st.markdown(f"**Confidence:** {result['confidence']:.1f}%")
                    st.markdown(f"**VCDR:** {result['vcdr']:.3f}")
                    
                    # Display images
                    st.image(result['processed_image'], caption="Segmentation")
                    st.image(result['cropped_image'], caption="ROI")
                    st.markdown("---")
                
                # Generate downloads
                print("Generating ZIP file") # Debug print
                zip_data = save_results(results, original_images)
                
                st.markdown("### Download Results")
                # Replace download_button with direct download link
                filename = f"glaucoma_screening_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
                st.markdown(
                    f'<a href="data:application/zip;base64,{base64.b64encode(zip_data).decode()}" download="{filename}">Download All Results (ZIP)</a>', 
                    unsafe_allow_html=True
                )
                
                # Simple summary
                st.markdown("### Summary")
                glaucoma_count = sum(1 for r in results if r['diagnosis'] == 'Glaucoma')
                normal_count = len(results) - glaucoma_count
                st.markdown(f"**Total Processed:** {len(results)}")
                st.markdown(f"**Glaucoma Detected:** {glaucoma_count}")
                st.markdown(f"**Normal:** {normal_count}")
                st.markdown(f"**Average Confidence:** {sum(r['confidence'] for r in results) / len(results):.1f}%")
        
        except Exception as e:
            print(f"Error in main processing: {str(e)}") # Debug print
            st.error(f"An error occurred: {str(e)}")

if __name__ == "__main__":
    print("Starting main") # Debug print
    main()